Statistical And Geometrical Approaches To Visual Motion Analysis

Download Statistical And Geometrical Approaches To Visual Motion Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Statistical And Geometrical Approaches To Visual Motion Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical and Geometrical Approaches to Visual Motion Analysis

Author: Daniel Cremers
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-07-25
This book constitutes the thoroughly refereed post-conference proceedings of the International Dagstuhl-Seminar on Statistical and Geometrical Approaches to Visual Motion Analysis, held in Dagstuhl Castle, Germany, in July 2008. The workshop focused on critical aspects of motion analysis, including motion segmentation and the modeling of motion patterns. The aim was to gather researchers who are experts in the different motion tasks and in the different techniques used; also involved were experts in the study of human and primate vision. The 15 revised full papers presented were carefully reviewed and selected from or initiated by the lectures given at the workshop. The papers are organized in topical sections on optical flow and extensions, human motion modeling, biological and statistical approaches, alternative approaches to motion analysis.
Stereo Scene Flow for 3D Motion Analysis

Author: Andreas Wedel
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-08-17
This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving motion from stereo image sequences; analyses the error characteristics for motion variables, and derives scene flow metrics for movement likelihood and velocity; introduces a framework for scene flow-based moving object detection and segmentation; includes Appendices on data terms and quadratic optimization, and scene flow implementation using Euler-Lagrange equations, in addition to a helpful Glossary.
Optical Flow and Trajectory Estimation Methods

This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginning with a review of optical flow fundamentals, it discusses the commonly used flow estimation strategies and the advantages or shortcomings of each. The brief also introduces the concepts associated with sparsity including dictionaries and low rank matrices. Next, it provides context for optical flow and trajectory methods including algorithms, data sets, and performance measurement. The second half of the brief covers sparse regularization of total variation optical flow and robust low rank trajectories. The authors describe a new approach that uses partially-overlapping patches to accelerate the calculation and is implemented in a coarse-to-fine strategy. Experimental results show that combining total variation and a sparse constraint from a learned dictionary is more effective than employing total variation alone. The brief is targeted at researchers and practitioners in the fields of engineering and computer science. It caters particularly to new researchers looking for cutting edge topics in optical flow as well as veterans of optical flow wishing to learn of the latest advances in multi-frame methods. /div