State Space Search


Download State Space Search PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get State Space Search book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

State Space Search


State Space Search

Author: Fouad Sabry

language: en

Publisher: One Billion Knowledgeable

Release Date: 2023-06-28


DOWNLOAD





What Is State Space Search State space search is a technique that is employed in the field of computer science, particularly artificial intelligence (AI), in which consecutive configurations or states of an instance are explored, with the objective of finding a goal state with the desired feature. The term "state space search" comes from the phrase "state space," which refers to the space in which the process takes place. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: State Space Search Chapter 2: Brute-Force Search Chapter 3: Heuristic in Computer Science Chapter 4: Local Search Optimization Chapter 5: Game Tree Chapter 6: Constraint Satisfaction Problem Chapter 7: Adversarial Search Chapter 8: Markov Decision Process Chapter 9: Reinforcement Learning Chapter 10: Combinatorial search (II) Answering the public top questions about state space search. (III) Real world examples for the usage of state space search in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of state space search' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of state space search.

State-Space Search


State-Space Search

Author: Weixiong Zhang

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book is about problem solving. Specifically, it is about heuristic state-space search under branch-and-bound framework for solving com binatorial optimization problems. The two central themes of this book are the average-case complexity of heuristic state-space search algorithms based on branch-and-bound, and their applications to developing new problem-solving methods and algorithms. Heuristic state-space search is one of the fundamental problem-solving techniques in Computer Science and Operations Research, and usually constitutes an important component of most intelligent problem-solving systems. The search algorithms considered in this book can be classified into the category of branch-and-bound. Branch-and-bound is a general problem-solving paradigm, and is one of the best techniques for optimally solving computation-intensive problems, such as scheduling and planning. The main search algorithms considered include best-first search, depth first branch-and-bound, iterative deepening, recursive best-first search, and space-bounded best-first search. Best-first search and depth-first branch-and-bound are very well known and have been used extensively in Computer Science and Operations Research. One important feature of depth-first branch-and-bound is that it only requires space this is linear in the maximal search depth, making it very often a favorable search algo rithm over best-first search in practice. Iterative deepening and recursive best-first search are the other two linear-space search algorithms. Iterative deepening is an important algorithm in Artificial Intelligence, and plays an irreplaceable role in building a real-time game-playing program.

State-Space Search


State-Space Search

Author: Weixiong Zhang

language: en

Publisher: Springer Science & Business Media

Release Date: 1999-10-14


DOWNLOAD





This book is particularly concerned with heuristic state-space search for combinatorial optimization. Its two central themes are the average-case complexity of state-space search algorithms and the applications of the results notably to branch-and-bound techniques. Primarily written for researchers in computer science, the author presupposes a basic familiarity with complexity theory, and it is assumed that the reader is familiar with the basic concepts of random variables and recursive functions. Two successful applications are presented in depth: one is a set of state-space transformation methods which can be used to find approximate solutions quickly, and the second is forward estimation for constructing more informative evaluation functions.