Stability Of Linear Delay Differential Equations


Download Stability Of Linear Delay Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stability Of Linear Delay Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stability of Linear Delay Differential Equations


Stability of Linear Delay Differential Equations

Author: Dimitri Breda

language: en

Publisher: Springer

Release Date: 2014-10-21


DOWNLOAD





This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.

Stability and Oscillations in Delay Differential Equations of Population Dynamics


Stability and Oscillations in Delay Differential Equations of Population Dynamics

Author: K. Gopalsamy

language: en

Publisher: Springer Science & Business Media

Release Date: 1992-03-31


DOWNLOAD





This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.

Stability of Vector Differential Delay Equations


Stability of Vector Differential Delay Equations

Author: Michael I. Gil’

language: en

Publisher: Birkhäuser

Release Date: 2013-02-26


DOWNLOAD





Differential equations with delay naturally arise in various applications, such as control systems, viscoelasticity, mechanics, nuclear reactors, distributed networks, heat flows, neural networks, combustion, interaction of species, microbiology, learning models, epidemiology, physiology, and many others. This book systematically investigates the stability of linear as well as nonlinear vector differential equations with delay and equations with causal mappings. It presents explicit conditions for exponential, absolute and input-to-state stabilities. These stability conditions are mainly formulated in terms of the determinants and eigenvalues of auxiliary matrices dependent on a parameter; the suggested approach allows us to apply the well-known results of the theory of matrices. In addition, solution estimates for the considered equations are established which provide the bounds for regions of attraction of steady states. The main methodology presented in the book is based on a combined usage of the recent norm estimates for matrix-valued functions and the following methods and results: the generalized Bohl-Perron principle and the integral version of the generalized Bohl-Perron principle; the freezing method; the positivity of fundamental solutions. A significant part of the book is devoted to the Aizerman-Myshkis problem and generalized Hill theory of periodic systems. The book is intended not only for specialists in the theory of functional differential equations and control theory, but also for anyone with a sound mathematical background interested in their various applications.