Stability Constrained Optimization For Modern Power System Operation And Planning

Download Stability Constrained Optimization For Modern Power System Operation And Planning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stability Constrained Optimization For Modern Power System Operation And Planning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stability-Constrained Optimization for Modern Power System Operation and Planning

Stability-Constrained Optimization for Modern Power System Operation and Planning Comprehensive treatment of an aspect of stability constrained operations and planning, including the latest research and engineering practices Stability-Constrained Optimization for Modern Power System Operation and Planning focuses on the subject of power system stability. Unlike other books in this field, which focus mainly on the dynamic modeling, stability analysis, and controller design for power systems, this book is instead dedicated to stability-constrained optimization methodologies for power system stability enhancement, including transient stability-constrained power system dispatch and operational control, and voltage stability-constrained dynamic VAR Resources planning in the power grid. Authored by experts with established track records in both research and industry, Stability-Constrained Optimization for Modern Power System Operation and Planning covers three parts: Overview of power system stability, including definition, classification, phenomenon, mathematical models and analysis tools for stability assessment, as well as a review of recent large-scale blackouts in the world Transient stability-constrained optimal power flow (TSC-OPF) and transient stability constrained-unit commitment (TSC-UC) for power system dispatch and operational control, including a series of optimization model formulations, transient stability constraint construction and extraction methods, and efficient solution approaches Optimal planning of dynamic VAR Resources (such as STATCOM and SVC) in power system for voltage stability enhancement, including a set of voltage stability indices, candidate bus selection methods, multi-objective optimization model formulations, and high-quality solution approaches Stability-Constrained Optimization for Modern Power System Operation and Planning provides the latest research findings to scholars, researchers, and postgraduate students who are seeking optimization methodologies for power system stability enhancement, while also offering key practical methods to power system operators, planners, and optimization algorithm developers in the power industry.
Optimization of Power System Operation

Optimization of Power System Operation, 2nd Edition, offers a practical, hands-on guide to theoretical developments and to the application of advanced optimization methods to realistic electric power engineering problems. The book includes: New chapter on Application of Renewable Energy, and a new chapter on Operation of Smart Grid New topics include wheeling model, multi-area wheeling, and the total transfer capability computation in multiple areas Continues to provide engineers and academics with a complete picture of the optimization of techniques used in modern power system operation
Interval Methods for Uncertain Power System Analysis

Interval Methods for Uncertain Power System Analysis In Interval Methods for Uncertain Power System Analysis, accomplished engineer Dr. Alfredo Vaccaro delivers a comprehensive discussion of the mathematical foundations of range analysis and its application to solving traditional power system operation problems in the presence of strong and correlated uncertainties. The book explores highly relevant topics in the area, from interval methods for uncertainty representation and management to a variety of application examples. The author offers readers the latest methodological breakthroughs and roadmaps to implementing the mathematics discussed within, as well as best practices commonly employed across the industry. Interval Methods for Uncertain Power System Analysis includes examinations of linear and non-linear equations, as well as: A thorough introduction to reliable computing, including discussions of interval arithmetic and interval-based operators Comprehensive explorations of uncertain power flow analysis, including discussions of problem formulation and sources of uncertainty in power flow analysis In-depth examinations of uncertain optimal power flow analysis Fulsome discussions of uncertain small signal stability analysis, including treatments of how to compute eigenvalues of uncertain matrices Perfect for engineers working in power flow and optimal power flow analyses, optimization theory, and computer aided simulation, Interval Methods for Uncertain Power System Analysis will also earn a place in the libraries of researchers and graduate students studying decision making under uncertainty in power systems operation.