Stability And Stabilization Of Infinite Dimensional Systems With Applications


Download Stability And Stabilization Of Infinite Dimensional Systems With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stability And Stabilization Of Infinite Dimensional Systems With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Stability and Stabilization of Infinite Dimensional Systems with Applications


Stability and Stabilization of Infinite Dimensional Systems with Applications

Author: Zheng-Hua Luo

language: en

Publisher: Springer Science & Business Media

Release Date: 1999-01-22


DOWNLOAD





The time evol11tion of many physical phenomena in nat11re can be de scribed by partial differential eq11ations. To analyze and control the dynamic behavior of s11ch systems. infinite dimensional system theory was developed and has been refined over the past several decades. In recent years. stim11lated by the applications arising from space exploration. a11tomated manufact11ring, and other areas of technological advancement, major progress has been made in both theory and control technology associated with infinite dimensional systems. For example, new conditions in the time domain and frequency domain have been derived which guarantee that a Co-semigroup is exponen tially stable; new feedback control laws helVe been proposed to exponentially ;;tabilize beam. wave, and thermoelastic equations; and new methods have been developed which allow us to show that the spectrum-determined growth condition holds for a wide class of systems. Therefore, there is a need for a reference book which presents these restllts in an integrated fashion. Complementing the existing books, e. g . . [1]. [41]. and [128]. this book reports some recent achievements in stability and feedback stabilization of infinite dimensional systems. In particular, emphasis will be placed on the second order partial differential equations. such as Euler-Bernoulli beam equations. which arise from control of numerous mechanical systems stich as flexible robot arms and large space structures. We will be focusing on new results. most of which are our own recently obtained research results.

Stability and Stabilization of Infinite Dimensional Systems with Applications


Stability and Stabilization of Infinite Dimensional Systems with Applications

Author: Zheng-Hua Luo

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





This book reports on recent achievements in stability and feedback stabilization of infinite systems. In particular emphasis is placed on second order partial differential equations, such as Euler-Bernoulli beam equations, which arise from vibration control of flexible robots arms and large space structures. Various control methods such as sensor feedback control and dynamic boundary control are applied to stabilize the equations. Many new theorems and methods are included in the book. Proof procedures of existing theorems are simplified, and detailed proofs have been given to most theorems. New results on semigroups and their stability are presented, and readers can learn several useful techniques for solving practical engineering problems. Until now, the recently obtained research results included in this book were unavailable in one volume. This self-contained book is an invaluable source of information for all those who are familiar with some basic theorems of functional analysis.

Stabilization of Infinite Dimensional Systems


Stabilization of Infinite Dimensional Systems

Author: El Hassan Zerrik

language: en

Publisher:

Release Date: 2021


DOWNLOAD





This book deals with the stabilization issue of infinite dimensional dynamical systems both at the theoretical and applications levels. Systems theory is a branch of applied mathematics, which is interdisciplinary and develops activities in fundamental research which are at the frontier of mathematics, automation and engineering sciences. It is everywhere, innumerable and daily, and moreover is there something which is not system: it is present in medicine, commerce, economy, psychology, biological sciences, finance, architecture (construction of towers, bridges, etc.), weather forecast, robotics, automobile, aeronautics, localization systems and so on. These are the few fields of application that are useful and even essential to our society. It is a question of studying the behavior of systems and acting on their evolution. Among the most important notions in system theory, which has attracted the most attention, is stability. The existing literature on systems stability is quite important, but disparate, and the purpose of this book is to bring together in one document the essential results on the stability of infinite dimensional dynamical systems. In addition, as such systems evolve in time and space, explorations and research on their stability have been mainly focused on the whole domain in which the system evolved. The authors have strongly felt that, in this sense, important considerations are missing: those which consist in considering that the system of interest may be unstable on the whole domain, but stable in a certain region of the whole domain. This is the case in many applications ranging from engineering sciences to living science. For this reason, the authors have dedicated this book to extension of classical results on stability to the regional case. This book considers a very important issue, which is that it should be accessible to mathematicians and to graduate engineering with a minimal background in functional analysis. Moreover, for the majority of the students, this would be their only acquaintance with infinite dimensional system. Accordingly, it is organized by following increasing difficulty order. The two first chapters deal with stability and stabilization of infinite dimensional linear systems described by partial differential equations. The following chapters concern original and innovative aspects of stability and stabilization of certain classes of systems motivated by real applications, that is to say bilinear and semi-linear systems. The stability of these systems has been considered from a global and regional point of view. A particular aspect concerning the stability of the gradient has also been considered for various classes of systems. This book is aimed at students of doctoral and master's degrees, engineering students and researchers interested in the stability of infinite dimensional dynamical systems, in various aspects.