Stability And Control Of Large Scale Dynamical Systems

Download Stability And Control Of Large Scale Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Stability And Control Of Large Scale Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stability and Control of Large-Scale Dynamical Systems

Author: Wassim M. Haddad
language: en
Publisher: Princeton University Press
Release Date: 2011-12-04
Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of technological, environmental, and social phenomena. This book develops stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems.
Approximation of Large-Scale Dynamical Systems

Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.
Stability and Control of Large-Scale Dynamical Systems

Author: Wassim M. Haddad
language: en
Publisher: Princeton University Press
Release Date: 2011-11-14
Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynamical systems are strongly interconnected and consist of interacting subsystems exchanging matter, energy, or information with the environment. The sheer size, or dimensionality, of these systems necessitates decentralized analysis and control system synthesis methods for their analysis and design. Written in a theorem-proof format with examples to illustrate new concepts, this book addresses continuous-time, discrete-time, and hybrid large-scale systems. It develops finite-time stability and finite-time decentralized stabilization, thermodynamic modeling, maximum entropy control, and energy-based decentralized control. This book will interest applied mathematicians, dynamical systems theorists, control theorists, and engineers, and anyone seeking a fundamental and comprehensive understanding of large-scale interconnected dynamical systems and control.