Splitting Algorithms Modern Operator Theory And Applications

Download Splitting Algorithms Modern Operator Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Splitting Algorithms Modern Operator Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Splitting Algorithms, Modern Operator Theory, and Applications

This book brings together research articles and state-of-the-art surveys in broad areas of optimization and numerical analysis with particular emphasis on algorithms. The discussion also focuses on advances in monotone operator theory and other topics from variational analysis and nonsmooth optimization, especially as they pertain to algorithms and concrete, implementable methods. The theory of monotone operators is a central framework for understanding and analyzing splitting algorithms. Topics discussed in the volume were presented at the interdisciplinary workshop titled Splitting Algorithms, Modern Operator Theory, and Applications held in Oaxaca, Mexico in September, 2017. Dedicated to Jonathan M. Borwein, one of the most versatile mathematicians in contemporary history, this compilation brings theory together with applications in novel and insightful ways.
The Krasnosel'skiĭ-Mann Iterative Method

This brief explores the Krasnosel'skiĭ-Man (KM) iterative method, which has been extensively employed to find fixed points of nonlinear methods.
Second-Order Variational Analysis in Optimization, Variational Stability, and Control

Author: Boris S. Mordukhovich
language: en
Publisher: Springer Nature
Release Date: 2024-05-21
This fundamental work is a sequel to monographs by the same author: Variational Analysis and Applications (2018) and the two Grundlehren volumes Variational Analysis and Generalized Differentiation: I Basic Theory, II Applications (2006). This present book is the first entirely devoted to second-order variational analysis with numerical algorithms and applications to practical models. It covers a wide range of topics including theoretical, numerical, and implementations that will interest researchers in analysis, applied mathematics, mathematical economics, engineering, and optimization. Inclusion of a variety of exercises and commentaries in each chapter allows the book to be used effectively in a course on this subject. This area has been well recognized as an important and rapidly developing area of nonlinear analysis and optimization with numerous applications. Consisting of 9 interrelated chapters, the book is self-contained with the inclusion of some preliminaries in Chapter 1. Results presented are useful tools for characterizations of fundamental notions of variational stability of solutions for diverse classes of problems in optimization and optimal control, the study of variational convexity of extended-real-valued functions and their specifications and variational sufficiency in optimization. Explicit calculations and important applications of second-order subdifferentials associated with the achieved characterizations of variational stability and related concepts, to the design and justification of second-order numerical algorithms for solving various classes of optimization problems, nonsmooth equations, and subgradient systems, are included. Generalized Newtonian algorithms are presented that show local and global convergence with linear, superlinear, and quadratic convergence rates. Algorithms are implemented to address interesting practical problems from the fields of machine learning, statistics, imaging, and other areas.