Spectral Mixture For Remote Sensing

Download Spectral Mixture For Remote Sensing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spectral Mixture For Remote Sensing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Spectral Mixture for Remote Sensing

This book explains in a didactic way the basic concepts of spectral mixing, digital numbers and orbital sensors, and then presents the linear modelling technique of spectral mixing and the generation of fractional images. In addition to presenting a theoretical basis for spectral mixing, the book provides examples of practical applications such as projects for estimating and monitoring deforested areas in the Amazon. In its seven chapters, the book offers remote sensing techniques to understand the main concepts, methods, and limitations of spectral mixing for digital image processing. Chapter 1 addresses the basic concepts of spectral mixing, while chapters 2 and 3 discuss digital numbers and orbital sensors such as MODIS and Landsat MSS. Chapter 4 details the linear spectral mixing model, and chapter 5 talks about how to use this technique to create fraction images. Chapter 6 offers remote sensing applications of fraction images in deforestation monitoring, burned-area mapping, selective logging detection, and land-use/land-cover mapping. Chapter 7 gives some concluding thoughts on spectral mixing, and considers future uses in environmental remote sensing. This book will be of interest to students, teachers, and researchers using remote sensing for Earth observation and environmental modelling.
Hyperspectral Imaging Remote Sensing

Author: Dimitris G. Manolakis
language: en
Publisher: Cambridge University Press
Release Date: 2016-10-20
Understand the seminal principles, current techniques, and tools of imaging spectroscopy with this self-contained introductory guide.
Resolving Spectral Mixtures

Resolving Spectral Mixtures: With Applications from Ultrafast Time-Resolved Spectroscopy to Superresolution Imaging offers a comprehensive look into the most important models and frameworks essential to resolving the spectral unmixing problem—from multivariate curve resolution and multi-way analysis to Bayesian positive source separation and nonlinear unmixing. Unravelling total spectral data into the contributions from individual unknown components with limited prior information is a complex problem that has attracted continuous interest for almost four decades. Spectral unmixing is a topic of interest in statistics, chemometrics, signal processing, and image analysis. For decades, researchers from these fields were often unaware of the work in other disciplines due to their different scientific and technical backgrounds and interest in different objects or samples. This led to the development of quite different approaches to solving the same problem. This multi-authored book will bridge the gap between disciplines with contributions from a number of well-known and strongly active chemometric and signal processing research groups. Among chemists, multivariate curve resolution methods are preferred to extract information about the nature, amount, and location in time (process) and space (imaging and microscopy) of chemical constituents in complex samples. In signal processing, assumptions are usually around statistical independence of the extracted components. However, the chapters include the complexity of the spectral data to be unmixed as well as dimensionality and size of the data sets. Advanced spectroscopy is the key thread linking the different chapters. Applications cover a large part of the electromagnetic spectrum. Time-resolution ranges from femtosecond to second in process spectroscopy and spatial resolution covers the submicronic to macroscopic scale in hyperspectral imaging. - Demonstrates how and why data analysis, signal processing, and chemometrics are essential to the spectral unmixing problem - Guides the reader through the fundamentals and details of the different methods - Presents extensive plots, graphical representations, and illustrations to help readers understand the features of different techniques and to interpret results - Bridges the gap between disciplines with contributions from a number of well-known and highly active chemometric and signal processing research groups