Spectral Geometry Of Manifolds With Boundary And Decomposition Of Manifolds


Download Spectral Geometry Of Manifolds With Boundary And Decomposition Of Manifolds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spectral Geometry Of Manifolds With Boundary And Decomposition Of Manifolds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds


Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds

Author: Gerd Grubb

language: en

Publisher: American Mathematical Soc.

Release Date: 2005


DOWNLOAD





In recent years, increasingly complex methods have been brought into play in the treatment of geometric and topological problems for partial differential operators on manifolds. This collection of papers, resulting from a Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, provides a broad picture of these methods with new results. Subjects in the book cover a wide variety of topics, from recent advances in index theory and the more general boundary, to applications of those invariants in geometry, topology, and physics. Papers are grouped into four parts: Part I gives an overview of the subject from various points of view. Part II deals with spectral invariants, such as geometric and topological questions. Part IV deals specifically with problems on manifolds with singularities. The book is suitable for graduate students and researchers interested in spectral problems in geometry.

Connes-Chern Character for Manifolds with Boundary and Eta Cochains


Connes-Chern Character for Manifolds with Boundary and Eta Cochains

Author: Matthias Lesch

language: en

Publisher: American Mathematical Soc.

Release Date: 2012


DOWNLOAD





"November 2012, volume 220, number (end of volume)."

Analysis, Geometry and Topology of Elliptic Operators


Analysis, Geometry and Topology of Elliptic Operators

Author: Bernhelm Booss

language: en

Publisher: World Scientific

Release Date: 2006


DOWNLOAD





Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics. The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski''s work in the theory of elliptic operators. Sample Chapter(s). Contents (42 KB). Contents: On the Mathematical Work of Krzysztof P Wojciechowski: Selected Aspects of the Mathematical Work of Krzysztof P Wojciechowski (M Lesch); Gluing Formulae of Spectral Invariants and Cauchy Data Spaces (J Park); Topological Theories: The Behavior of the Analytic Index under Nontrivial Embedding (D Bleecker); Critical Points of Polynomials in Three Complex Variables (L I Nicolaescu); Chern-Weil Forms Associated with Superconnections (S Paycha & S Scott); Heat Kernel Calculations and Surgery: Non-Laplace Type Operators on Manifolds with Boundary (I G Avramidi); Eta Invariants for Manifold with Boundary (X Dai); Heat Kernels of the Sub-Laplacian and the Laplacian on Nilpotent Lie Groups (K Furutani); Remarks on Nonlocal Trace Expansion Coefficients (G Grubb); An Anomaly Formula for L 2- Analytic Torsions on Manifolds with Boundary (X Ma & W Zhang); Conformal Anomalies via Canonical Traces (S Paycha & S Rosenberg); Noncommutative Geometry: An Analytic Approach to Spectral Flow in von Neumann Algebras (M-T Benameur et al.); Elliptic Operators on Infinite Graphs (J Dodziuk); A New Kind of Index Theorem (R G Douglas); A Note on Noncommutative Holomorphic and Harmonic Functions on the Unit Disk (S Klimek); Star Products and Central Extensions (J Mickelsson); An Elementary Proof of the Homotopy Equivalence between the Restricted General Linear Group and the Space of Fredholm Operators (T Wurzbacher); Theoretical Particle, String and Membrane Physics, and Hamiltonian Dynamics: T-Duality for Non-Free Circle Actions (U Bunke & T Schick); A New Spectral Cancellation in Quantum Gravity (G Esposito et al.); A Generalized Morse Index Theorem (C Zhu). Readership: Researchers in modern global analysis and particle physics.