Special Metrics And Group Actions In Geometry

Download Special Metrics And Group Actions In Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Special Metrics And Group Actions In Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Special Metrics and Group Actions in Geometry

The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
Lie Groups and Geometric Aspects of Isometric Actions

This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.
Geometry, Rigidity, and Group Actions

Author: Benson Farb
language: en
Publisher: University of Chicago Press
Release Date: 2011-04-15
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others. The papers in Geometry, Rigidity, and Group Actions explore the role of group actions and rigidity in several areas of mathematics, including ergodic theory, dynamics, geometry, topology, and the algebraic properties of representation varieties. In some cases, the dynamics of the possible group actions are the principal focus of inquiry. In other cases, the dynamics of group actions are a tool for proving theorems about algebra, geometry, or topology. This volume contains surveys of some of the main directions in the field, as well as research articles on topics of current interest.