Special Issue Generalized Convexity In Optimization

Download Special Issue Generalized Convexity In Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Special Issue Generalized Convexity In Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Convex Optimization

Author: Stephen P. Boyd
language: en
Publisher: Cambridge University Press
Release Date: 2004-03-08
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Integral Inequalities and Generalized Convexity

The book covers several new research findings in the area of generalized convexity and integral inequalities. Integral inequalities using various type of generalized convex functions are applicable in many branches of mathematics such as mathematical analysis, fractional calculus, and discrete fractional calculus. The book contains integral inequalities of Hermite-Hadamard type, Hermite- Hadamard-Fejer type and majorization type for the generalized strongly convex functions. It presents Hermite-Hadamard type inequalities for functions defined on Time scales. Further, it provides the generalization and extensions of the concept of preinvexity for interval-valued functions and stochastic processes, and give Hermite-Hadamard type and Ostrowski type inequalities for these functions. These integral inequalities are utilized in numerous areas for the boundedness of generalized convex functions. Features: Covers Interval-valued calculus, Time scale calculus, Stochastic processes – all in one single book Numerous examples to validate results Provides an overview of the current state of integral inequalities and convexity for a much wider audience, including practitioners Applications of some special means of real numbers are also discussed The book is ideal for anyone teaching or attending courses in integral inequalities along with researchers in this area.