Spatiotemporal Representation Learning For Human Action Recognition And Localization

Download Spatiotemporal Representation Learning For Human Action Recognition And Localization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatiotemporal Representation Learning For Human Action Recognition And Localization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Spatiotemporal Representation Learning For Human Action Recognition And Localization

Human action understanding from videos is one of the foremost challenges in computer vision. It is the cornerstone of many applications like human-computer interaction and automatic surveillance. The current state of the art methods for action recognition and localization mostly rely on Deep Learning. In spite of their strong performance, Deep Learning approaches require a huge amount of labeled training data. Furthermore, standard action recognition pipelines rely on independent optical flow estimators which increase their computational cost. We propose two approaches to improve these aspects. First, we develop a novel method for efficient, real-time action localization in videos that achieves performance on par or better than other more computationally expensive methods. Second, we present a self-supervised learning approach for spatiotemporal feature learning that does not require any annotations. We demonstrate that features learned by our method provide a very strong prior for the downstream task of action recognition.
Computer Vision – ECCV 2020

The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Pattern Recognition

Author: Apostolos Antonacopoulos
language: en
Publisher: Springer Nature
Release Date: 2024-12-01
The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1–5, 2024. The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.