Spatio Temporal Networks

Download Spatio Temporal Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatio Temporal Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Spatio-temporal Networks

Author: Betsy George
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-09-05
Spatio-temporal networks (STN)are spatial networks whose topology and/or attributes change with time. These are encountered in many critical areas of everyday life such as transportation networks, electric power distribution grids, and social networks of mobile users. STN modeling and computations raise significant challenges. The model must meet the conflicting requirements of simplicity and adequate support for efficient algorithms. Another challenge is to address the change in the semantics of common graph operations, such as, shortest path computation assuming different semantics, or when temporal dimension is added. Also paradigms (e.g. dynamic programming) used in algorithm design may be ineffective since their assumptions (e.g. stationary ranking of candidates) may be violated by the dynamic nature of STNs. In recent years, STNs have attracted attention in research. New representations have been proposed along with algorithms to perform key STN operations, while accounting for their time dependence. Designing a STN database would require the development of data models, query languages, and indexing methods to efficiently represent, query, store, and manage time-variant properties of the network. The purpose of Spatio-temporal Networks: Modeling and Algorithms is to explore this design at the conceptual, logical, and physical level. Models used to represent STNs are explored and analyzed. STN operations, with an emphasis on their altered semantics with the addition of temporal dimension, are also addressed.
Spatio-Temporal Graph Data Analytics

This book highlights some of the unique aspects of spatio-temporal graph data from the perspectives of modeling and developing scalable algorithms. The authors discuss in the first part of this book, the semantic aspects of spatio-temporal graph data in two application domains, viz., urban transportation and social networks. Then the authors present representational models and data structures, which can effectively capture these semantics, while ensuring support for computationally scalable algorithms. In the first part of the book, the authors describe algorithmic development issues in spatio-temporal graph data. These algorithms internally use the semantically rich data structures developed in the earlier part of this book. Finally, the authors introduce some upcoming spatio-temporal graph datasets, such as engine measurement data, and discuss some open research problems in the area. This book will be useful as a secondary text for advanced-level students entering into relevant fields of computer science, such as transportation and urban planning. It may also be useful for researchers and practitioners in the field of navigational algorithms.
Understanding Large Temporal Networks and Spatial Networks

Author: Vladimir Batagelj
language: en
Publisher: John Wiley & Sons
Release Date: 2014-09-05
This book explores social mechanisms that drive network change and link them to computationally sound models of changing structure to detect patterns. This text identifies the social processes generating these networks and how networks have evolved. Reviews: "this book is easy to read and entertaining, and much can be learned from it. Even if you know just about everything about large-scale and temporal networks, the book is a worthwhile read; you will learn a lot about SNA literature, patents, the US Supreme Court, and European soccer." (Social Networks) "a clear and accessible textbook, balancing symbolic maths, code, and visual explanations. The authors’ enthusiasm for the subject matter makes it enjoyable to read" (JASSS)