Spatial Branching Processes Random Snakes And Partial Differential Equations

Download Spatial Branching Processes Random Snakes And Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Spatial Branching Processes Random Snakes And Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Spatial Branching Processes, Random Snakes and Partial Differential Equations

Author: Jean-Francois Le Gall
language: en
Publisher: Springer Science & Business Media
Release Date: 1999-07-01
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Spatial Branching Processes, Random Snakes and Partial Differential Equations

In these lectures, we give an account of certain recent developments of the theory of spatial branching processes. These developments lead to several fas cinating probabilistic objects, which combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial dif ferential equations. Our first objective is to give a short self-contained presentation of the measure valued branching processes called superprocesses, which have been studied extensively in the last twelve years. We then want to specialize to the important class of superprocesses with quadratic branching mechanism and to explain how a concrete and powerful representation of these processes can be given in terms of the path-valued process called the Brownian snake. To understand this representation as well as to apply it, one needs to derive some remarkable properties of branching trees embedded in linear Brownian motion, which are of independent interest. A nice application of these developments is a simple construction of the random measure called ISE, which was proposed by Aldous as a tree-based model for random distribution of mass and seems to play an important role in asymptotics of certain models of statistical mechanics. We use the Brownian snake approach to investigate connections between super processes and partial differential equations. These connections are remarkable in the sense that almost every important probabilistic question corresponds to a significant analytic problem.