Sparse Sensing And Sparsity Sensed In Multi Sensor Array Applications

Download Sparse Sensing And Sparsity Sensed In Multi Sensor Array Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sparse Sensing And Sparsity Sensed In Multi Sensor Array Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Sparse Sensing and Sparsity Sensed in Multi-sensor Array Applications

The book focuses on sparse multi-sensor array systems and design approaches. Both principles and engineering practice have been addressed, with more weight placed on algorithm development. This is achieved by providing an in-depth study on sparse sensing for several major multi-sensor array applications such as beam-pattern synthesis, adaptive beamforming, target detection, arrival angle estimation, and dual-functional radar communications. Sparsity sensed in multi-sensor arrays refers to the sparse property of the spatial spectrum sensed. The exploitation of the sparsity in the sensed can significantly enhance the performance of signal processing systems. The comprehensive and systematic treatment of theory and practice in different array applications is one of the major features of the book, which is particularly suited for readers who are interested to learn practical solutions in array signal processing. The book benefits researchers, engineers, and graduate students in the fields of signal processing, electrical engineering, telecommunications, etc.
A Mathematical Introduction to Compressive Sensing

Author: Simon Foucart
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-08-13
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
Robust Adaptive Beamforming

The latest research and developments in robust adaptivebeamforming Recent work has made great strides toward devising robust adaptivebeamformers that vastly improve signal strength against backgroundnoise and directional interference. This dynamic technology hasdiverse applications, including radar, sonar, acoustics, astronomy,seismology, communications, and medical imaging. There are alsoexciting emerging applications such as smart antennas for wirelesscommunications, handheld ultrasound imaging systems, anddirectional hearing aids. Robust Adaptive Beamforming compiles the theories and work ofleading researchers investigating various approaches in onecomprehensive volume. Unlike previous efforts, these pioneeringstudies are based on theories that use an uncertainty set of thearray steering vector. The researchers define their theories,explain their methodologies, and present their conclusions. Methodspresented include: * Coupling the standard Capon beamformers with a spherical orellipsoidal uncertainty set of the array steering vector * Diagonal loading for finite sample size beamforming * Mean-squared error beamforming for signal estimation * Constant modulus beamforming * Robust wideband beamforming using a steered adaptive beamformerto adapt the weight vector within a generalized sidelobe cancellerformulation Robust Adaptive Beamforming provides a truly up-to-date resourceand reference for engineers, researchers, and graduate students inthis promising, rapidly expanding field.