Sparse Representations For Radar With Matlab Examples


Download Sparse Representations For Radar With Matlab Examples PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sparse Representations For Radar With Matlab Examples book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Sparse Representations for Radar with MATLAB® Examples


Sparse Representations for Radar with MATLAB® Examples

Author: Peter Knee

language: en

Publisher: Morgan & Claypool Publishers

Release Date: 2012-10-01


DOWNLOAD





Although the field of sparse representations is relatively new, research activities in academic and industrial research labs are already producing encouraging results. The sparse signal or parameter model motivated several researchers and practitioners to explore high complexity/wide bandwidth applications such as Digital TV, MRI processing, and certain defense applications. The potential signal processing advancements in this area may influence radar technologies. This book presents the basic mathematical concepts along with a number of useful MATLAB® examples to emphasize the practical implementations both inside and outside the radar field. Table of Contents: Radar Systems: A Signal Processing Perspective / Introduction to Sparse Representations / Dimensionality Reduction / Radar Signal Processing Fundamentals / Sparse Representations in Radar

Sparse Representations for Radar with MATLAB Examples


Sparse Representations for Radar with MATLAB Examples

Author: Peter Knee

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





Although the field of sparse representations is relatively new, research activities in academic and industrial research labs are already producing encouraging results. The sparse signal or parameter model motivated several researchers and practitioners to explore high complexity/wide bandwidth applications such as Digital TV, MRI processing, and certain defense applications. The potential signal processing advancements in this area may influence radar technologies. This book presents the basic mathematical concepts along with a number of useful MATLAB® examples to emphasize the practical implementations both inside and outside the radar field. Table of Contents: Radar Systems: A Signal Processing Perspective / Introduction to Sparse Representations / Dimensionality Reduction / Radar Signal Processing Fundamentals / Sparse Representations in Radar

A Survey of Blur Detection and Sharpness Assessment Methods


A Survey of Blur Detection and Sharpness Assessment Methods

Author: Juan Andrade

language: en

Publisher: Springer Nature

Release Date: 2022-06-01


DOWNLOAD





Blurring is almost an omnipresent effect on natural images. The main causes of blurring in images include: (a) the existence of objects at different depths within the scene which is known as defocus blur; (b) blurring due to motion either of objects in the scene or the imaging device; and (c) blurring due to atmospheric turbulence. Automatic estimation of spatially varying sharpness/blurriness has several applications including depth estimation, image quality assessment, information retrieval, image restoration, among others. There are some cases in which blur is intentionally introduced or enhanced; for example, in artistic photography and cinematography in which blur is intentionally introduced to emphasize a certain image region. Bokeh is a technique that introduces defocus blur with aesthetic purposes. Additionally, in trending applications like augmented and virtual reality usually, blur is introduced in order to provide/enhance depth perception. Digital images and videos are produced every day in astonishing amounts and the demand for higher quality is constantly rising which creates a need for advanced image quality assessment. Additionally, image quality assessment is important for the performance of image processing algorithms. It has been determined that image noise and artifacts can affect the performance of algorithms such as face detection and recognition, image saliency detection, and video target tracking. Therefore, image quality assessment (IQA) has been a topic of intense research in the fields of image processing and computer vision. Since humans are the end consumers of multimedia signals, subjective quality metrics provide the most reliable results; however, their cost in addition to time requirements makes them unfeasible for practical applications. Thus, objective quality metrics are usually preferred.