Source Coding Theory

Download Source Coding Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Source Coding Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Source Coding Theory

Author: Robert M. Gray
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Source coding theory has as its goal the characterization of the optimal performance achievable in idealized communication systems which must code an information source for transmission over a digital communication or storage channel for transmission to a user. The user must decode the information into a form that is a good approximation to the original. A code is optimal within some class if it achieves the best possible fidelity given whatever constraints are imposed on the code by the available channel. In theory, the primary constraint imposed on a code by the channel is its rate or resolution, the number of bits per second or per input symbol that it can transmit from sender to receiver. In the real world, complexity may be as important as rate. The origins and the basic form of much of the theory date from Shan non's classical development of noiseless source coding and source coding subject to a fidelity criterion (also called rate-distortion theory) [73] [74]. Shannon combined a probabilistic notion of information with limit theo rems from ergodic theory and a random coding technique to describe the optimal performance of systems with a constrained rate but with uncon strained complexity and delay. An alternative approach called asymptotic or high rate quantization theory based on different techniques and approx imations was introduced by Bennett at approximately the same time [4]. This approach constrained the delay but allowed the rate to grow large.
Information Theory and Coding

Author: Dr. J. S. Chitode
language: en
Publisher: Technical Publications
Release Date: 2021-01-01
Various measures of information are discussed in first chapter. Information rate, entropy and mark off models are presented. Second and third chapter deals with source coding. Shannon's encoding algorithm, discrete communication channels, mutual information, Shannon's first theorem are also presented. Huffman coding and Shannon-Fano coding is also discussed. Continuous channels are discussed in fourth chapter. Channel coding theorem and channel capacity theorems are also presented. Block codes are discussed in chapter fifth, sixth and seventh. Linear block codes, Hamming codes, syndrome decoding is presented in detail. Structure and properties of cyclic codes, encoding and syndrome decoding for cyclic codes is also discussed. Additional cyclic codes such as RS codes, Golay codes, burst error correction is also discussed. Last chapter presents convolutional codes. Time domain, transform domain approach, code tree, code trellis, state diagram, Viterbi decoding is discussed in detail.
Distributed Source Coding

Distributed source coding is one of the key enablers for efficient cooperative communication. The potential applications range from wireless sensor networks, ad-hoc networks, and surveillance networks, to robust low-complexity video coding, stereo/Multiview video coding, HDTV, hyper-spectral and multispectral imaging, and biometrics. The book is divided into three sections: theory, algorithms, and applications. Part one covers the background of information theory with an emphasis on DSC; part two discusses designs of algorithmic solutions for DSC problems, covering the three most important DSC problems: Slepian-Wolf, Wyner-Ziv, and MT source coding; and part three is dedicated to a variety of potential DSC applications. Key features: Clear explanation of distributed source coding theory and algorithms including both lossless and lossy designs. Rich applications of distributed source coding, which covers multimedia communication and data security applications. Self-contained content for beginners from basic information theory to practical code implementation. The book provides fundamental knowledge for engineers and computer scientists to access the topic of distributed source coding. It is also suitable for senior undergraduate and first year graduate students in electrical engineering; computer engineering; signal processing; image/video processing; and information theory and communications.