Some Questions Of Differential Geometry In The Large


Download Some Questions Of Differential Geometry In The Large PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Some Questions Of Differential Geometry In The Large book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Differential Geometry in the Large


Differential Geometry in the Large

Author: Heinz Hopf

language: en

Publisher: Springer

Release Date: 2003-07-01


DOWNLOAD





These notes consist of two parts: Selected in York 1) Geometry, New 1946, Topics University Notes Peter Lax. by Differential in the 2) Lectures on Stanford Geometry Large, 1956, Notes J.W. University by Gray. are here with no essential They reproduced change. Heinz was a mathematician who mathema- Hopf recognized important tical ideas and new mathematical cases. In the phenomena through special the central idea the of a or difficulty problem simplest background is becomes clear. in this fashion a crystal Doing geometry usually lead serious allows this to to - joy. Hopf's great insight approach for most of the in these notes have become the st- thematics, topics I will to mention a of further try ting-points important developments. few. It is clear from these notes that laid the on Hopf emphasis po- differential Most of the results in smooth differ- hedral geometry. whose is both t1al have understanding geometry polyhedral counterparts, works I wish to mention and recent important challenging. Among those of Robert on which is much in the Connelly rigidity, very spirit R. and in - of these notes (cf. Connelly, Conjectures questions open International of Mathematicians, H- of gidity, Proceedings Congress sinki vol. 1, 407-414) 1978, .

Some questions of differential geometry in the large


Some questions of differential geometry in the large

Author: E. V. Shikin

language: en

Publisher: American Mathematical Soc.

Release Date: 1996-07-16


DOWNLOAD





This collection contains articles that present recent results by geometers in Russia and the Ukraine. Papers in the collection deal with various questions related to the structure, symmetries, and embeddings of submanifolds in Euclidean and pseudo-Euclidian spaces. This collection offers a review of the challenges facing specialists in geometry in the large and features current research in the field.

Differential Geometry and Statistics


Differential Geometry and Statistics

Author: M.K. Murray

language: en

Publisher: Routledge

Release Date: 2017-10-19


DOWNLOAD





Several years ago our statistical friends and relations introduced us to the work of Amari and Barndorff-Nielsen on applications of differential geometry to statistics. This book has arisen because we believe that there is a deep relationship between statistics and differential geometry and moreoever that this relationship uses parts of differential geometry, particularly its 'higher-order' aspects not readily accessible to a statistical audience from the existing literature. It is, in part, a long reply to the frequent requests we have had for references on differential geometry! While we have not gone beyond the path-breaking work of Amari and Barndorff- Nielsen in the realm of applications, our book gives some new explanations of their ideas from a first principles point of view as far as geometry is concerned. In particular it seeks to explain why geometry should enter into parametric statistics, and how the theory of asymptotic expansions involves a form of higher-order differential geometry. The first chapter of the book explores exponential families as flat geometries. Indeed the whole notion of using log-likelihoods amounts to exploiting a particular form of flat space known as an affine geometry, in which straight lines and planes make sense, but lengths and angles are absent. We use these geometric ideas to introduce the notion of the second fundamental form of a family whose vanishing characterises precisely the exponential families.