Solving Data Science Case Studies With Python


Download Solving Data Science Case Studies With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solving Data Science Case Studies With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Solving Data Science Case Studies with Python


Solving Data Science Case Studies with Python

Author: Aman Kharwal

language: en

Publisher: Thecleverprogrammer

Release Date: 2021-06-28


DOWNLOAD





This book is specially written for those who know the basics of the Python programming language as well as the necessary Python libraries you need for data science like NumPy, Pandas, Matplotlib, Seaborn, Plotly, and Scikit-learn. This book aims to teach you how to think while solving a business problem with your data science skills. To achieve the goal of this book, I started by giving you all the knowledge you need to have before you apply for your first data science job. The technical skills and soft skills you need to become a Data Scientist are also discussed in this book. Next, you'll find some of the best data science case studies that will help you understand what your approach should be while solving a business problem. Ultimately, you will also find some of the most important data science interview questions with their solutions at the end. I hope this book will add a lot of value to your data science skills and that you will feel confident in your entire journey to become Data Scientist.

Python Machine Learning Case Studies


Python Machine Learning Case Studies

Author: Danish Haroon

language: en

Publisher: Apress

Release Date: 2017-10-27


DOWNLOAD





Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources. Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You’ll see machine learning techniques that you can use to support your products and services. Moreover you’ll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs. By taking a step-by-step approach to coding in Python you’ll be able to understand the rationale behind model selection and decisions within the machine learning process. The bookis equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems. What You Will Learn Gain insights into machine learning concepts Work on real-world applications of machine learning Learn concepts of model selection and optimization Get a hands-on overview of Python from a machine learning point of view Who This Book Is For Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Introduction to Data Science


Introduction to Data Science

Author: Laura Igual

language: en

Publisher: Springer

Release Date: 2017-02-22


DOWNLOAD





This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.