Solutions In Lidar Profiling Of The Atmosphere


Download Solutions In Lidar Profiling Of The Atmosphere PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solutions In Lidar Profiling Of The Atmosphere book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Solutions in LIDAR Profiling of the Atmosphere


Solutions in LIDAR Profiling of the Atmosphere

Author: Vladimir A. Kovalev

language: en

Publisher: John Wiley & Sons

Release Date: 2015-01-20


DOWNLOAD





Provides tools and techniques to identify and address distortions and to interpret data coming from Lidar sensing technology This book covers the issues encountered in separating the backscatter and transmission terms in the LIDAR equation when profiling the atmosphere with zenith-directed and vertically-scanning Lidars. Solutions in Lidar Profiling of the Atmosphere explains how to manage and interpret the Llidar signals when the uncertainties of the involved atmospheric parameters are not treatable statistically. The author discusses specific scenarios for using specific scenarios for profiling vertical aerosol loading. Solutions in Lidar Profiling of the Atmosphere emphasizes the use of common sense when interacting with potentially large distortions inherent in most inversion techniques. Addresses the systematic errors in LIDAR measurements Proposes specific methods to estimate systematic distortions Explains how to apply these methods to both simulated and real data Solutions in Lidar Profiling of the Atmosphere is written for scientists, researchers, and graduate students in Meteorology and Geophysics.

Solutions in LIDAR Profiling of the Atmosphere


Solutions in LIDAR Profiling of the Atmosphere

Author: Vladimir A. Kovalev

language: en

Publisher: John Wiley & Sons

Release Date: 2015-02-17


DOWNLOAD





Provides tools and techniques to identify and address distortions and to interpret data coming from Lidar sensing technology This book covers the issues encountered in separating the backscatter and transmission terms in the LIDAR equation when profiling the atmosphere with zenith-directed and vertically-scanning Lidars. Solutions in Lidar Profiling of the Atmosphere explains how to manage and interpret the Llidar signals when the uncertainties of the involved atmospheric parameters are not treatable statistically. The author discusses specific scenarios for using specific scenarios for profiling vertical aerosol loading. Solutions in Lidar Profiling of the Atmosphere emphasizes the use of common sense when interacting with potentially large distortions inherent in most inversion techniques. Addresses the systematic errors in LIDAR measurements Proposes specific methods to estimate systematic distortions Explains how to apply these methods to both simulated and real data Solutions in Lidar Profiling of the Atmosphere is written for scientists, researchers, and graduate students in Meteorology and Geophysics.

Springer Handbook of Atmospheric Measurements


Springer Handbook of Atmospheric Measurements

Author: Thomas Foken

language: en

Publisher: Springer Nature

Release Date: 2021-11-09


DOWNLOAD





This practical handbook provides a clearly structured, concise and comprehensive account of the huge variety of atmospheric and related measurements relevant to meteorologists and for the purpose of weather forecasting and climate research, but also to the practitioner in the wider field of environmental physics and ecology. The Springer Handbook of Atmospheric Measurements is divided into six parts: The first part offers instructive descriptions of the basics of atmospheric measurements and the multitude of their influencing factors, fundamentals of quality control and standardization, as well as equations and tables of atmospheric, water, and soil quantities. The subsequent parts present classical in-situ measurements as well as remote sensing techniques from both ground-based as well as airborn or satellite-based methods. The next part focusses on complex measurements and methods that integrate different techniques to establish more holistic data. Brief discussions of measurements in soils and water, at plants, in urban and rural environments and for renewable energies demonstrate the potential of such applications. The final part provides an overview of atmospheric and ecological networks. Written by distinguished experts from academia and industry, each of the 64 chapters provides in-depth discussions of the available devices with their specifications, aspects of quality control, maintenance as well as their potential for the future. A large number of thoroughly compiled tables of physical quantities, sensors and system characteristics make this handbook a unique, universal and useful reference for the practitioner and absolutely essential for researchers, students, and technicians.