Solitons In Multidimensions Inverse Spectral Transform Method

Download Solitons In Multidimensions Inverse Spectral Transform Method PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solitons In Multidimensions Inverse Spectral Transform Method book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Solitons In Multidimensions: Inverse Spectral Transform Method

Author: B G Konopelchenko
language: en
Publisher: World Scientific
Release Date: 1993-04-30
The book is devoted to the mathematical theory of soliton phenomena on the plane. The inverse spectral transform method which is a main tool for the study of the (2+1)-dimensional soliton equation is reviewed. The ∂-problem and the Riemann-Hilbert problem method are discussed. Several basic examples of soliton equations are considered in detail. This volume is addressed both to the nonexpert and to the researcher in the field. This is the first literature dealing specifically with multidimensional solition equations.
The Legacy of the Inverse Scattering Transform in Applied Mathematics

Swift progress and new applications characterize the area of solitons and the inverse scattering transform. There are rapid developments in current nonlinear optical technology: Larger intensities are more available; pulse widths are smaller; relaxation times and damping rates are less significant. In keeping with these advancements, exactly integrable soliton equations, such as $3$-wave resonant interactions and second harmonic generation, are becoming more and more relevant inexperimental applications. Techniques are now being developed for using these interactions to frequency convert high intensity sources into frequency regimes where there are no lasers. Other experiments involve using these interactions to develop intense variable frequency sources, opening up even morepossibilities. This volume contains new developments and state-of-the-art research arising from the conference on the ``Legacy of the Inverse Scattering Transform'' held at Mount Holyoke College (South Hadley, MA). Unique to this volume is the opening section, ``Reviews''. This part of the book provides reviews of major research results in the inverse scattering transform (IST), on the application of IST to classical problems in differential geometry, on algebraic and analytic aspects ofsoliton-type equations, on a new method for studying boundary value problems for integrable partial differential equations (PDEs) in two dimensions, on chaos in PDEs, on advances in multi-soliton complexes, and on a unified approach to integrable systems via Painleve analysis. This conference provided aforum for general exposition and discussion of recent developments in nonlinear waves and related areas with potential applications to other fields. The book will be of interest to graduate students and researchers interested in mathematics, physics, and engineering.
Introduction to Multidimensional Integrable Equations

Author: B.G. Konopelchenko
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations.