Solid State Devices And Applications


Download Solid State Devices And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solid State Devices And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Fundamentals of Solid-state Electronics


Fundamentals of Solid-state Electronics

Author: Chih-Tang Sah

language: en

Publisher: World Scientific

Release Date: 1996


DOWNLOAD





This Solution Manual, a companion volume of the book, Fundamentals of Solid-State Electronics, provides the solutions to selected problems listed in the book. Most of the solutions are for the selected problems that had been assigned to the engineering undergraduate students who were taking an introductory device core course using this book.This Solution Manual also contains an extensive appendix which illustrates the application of the fundamentals to solutions of state-of-the-art transistor reliability problems which have been taught to advanced undergraduate and graduate students.

Introduction to Applied Solid State Physics


Introduction to Applied Solid State Physics

Author: Richard Dalven

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





The aim of this book is a discussion, at the introductory level, of some applications of solid state physics. The book evolved from notes written for a course offered three times in the Department of Physics of the University of California at Berkeley. The objects of the course were (a) to broaden the knowledge of graduate students in physics, especially those in solid state physics; (b) to provide a useful course covering the physics of a variety of solid state devices for students in several areas of physics; (c) to indicate some areas of research in applied solid state physics. To achieve these ends, this book is designed to be a survey of the physics of a number of solid state devices. As the italics indicate, the key words in this description are physics and survey. Physics is a key word because the book stresses the basic qualitative physics of the applications, in enough depth to explain the essentials of how a device works but not deeply enough to allow the reader to design one. The question emphasized is how the solid state physics of the application results in the basic useful property of the device. An example is how the physics of the tunnel diode results in a negative dynamic resistance. Specific circuit applications of devices are mentioned, but not emphasized, since expositions are available in the elec trical engineering textbooks given as references.

Light-Emitting Diodes


Light-Emitting Diodes

Author: Jinmin Li

language: en

Publisher: Springer

Release Date: 2019-01-07


DOWNLOAD





Comprehensive in scope, this book covers the latest progresses of theories, technologies and applications of LEDs based on III-V semiconductor materials, such as basic material physics, key device issues (homoepitaxy and heteroepitaxy of the materials on different substrates, quantum efficiency and novel structures, and more), packaging, and system integration. The authors describe the latest developments of LEDs with spectra coverage from ultra-violet (UV) to the entire visible light wavelength. The major aspects of LEDs, such as material growth, chip structure, packaging, and reliability are covered, as well as emerging and novel applications beyond the general and conventional lightings. This book, written by leading authorities in the field, is indispensable reading for researchers and students working with semiconductors, optoelectronics, and optics. Addresses novel LED applications such as LEDs for healthcare and wellbeing, horticulture, and animal breeding; Editor and chapter authors are global leading experts from the scientific and industry communities, and their latest research findings and achievements are included; Foreword by Hiroshi Amano, one of the 2014 winners of the Nobel Prize in Physics for his work on light-emitting diodes.