Solder Joint Reliability Of Bga Csp Flip Chip And Fine Pitch Smt Assemblies


Download Solder Joint Reliability Of Bga Csp Flip Chip And Fine Pitch Smt Assemblies PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Solder Joint Reliability Of Bga Csp Flip Chip And Fine Pitch Smt Assemblies book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies


Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies

Author: John H. Lau

language: en

Publisher: McGraw-Hill Professional Publishing

Release Date: 1997


DOWNLOAD





The explosive growth of high-density packaging has created a tremendous impact on the electronic assembly and manufacturing industry. Ball grid array (BGA), chip-scale package (CSP), and solder-bumped flip chip technologies are taking the lead in this advanced manufacturing process. Many major equipment makers and leading electronic companies are now gearing up for these emerging and advanced packaging technologies. For these technologies, solder is the electrical and mechanical "glue," and thus solder joint reliability is one of the most critical issues in the development of these technologies. This book is a one-stop guide to the state of the art of solder joint reliability problem-solving methods, or choose a creative, high-performance, robust, and cost-effective design and high-yield manufacturing process for their interconnect systems will be able to do so with this unique sourcebook. It meets the reference needs of design, material, process, equipment, manufacturing, quality control, product assurance, reliability, component, packaging, vendor, marketing, and system engineers, and technical managers working in electronic packaging and interconnection. This book is structured to provide readers with the necessary know-how for practical, on-the-job problem-solving guidance. The book covers the solder joint reliability of BGA, CSP, flip chip, and FPT assemblies completely, proceeding from the theoretical basics to applications. Specific areas covered include: Definition of reliability, life distribution, failure rate, mean time to failure, etc.; Some well-known life distributions; Accelerated testing; Parameter estimation of life distributions; Acceleration factors for solders;Solder mechanics: plasticity, creep, and constitutive equations; Design, material, and manufacturing processes of BGA, CSP, flip chip, and FTP; Failure analysis and root cause of failure for BGA, CSP, flip chip, and FPT solder joints; Design for reliability of BGA, CSP, flip chip and FPT solder joints; Solder joint reliability of CBGA, PBGA, DBGA, and TBGA assemblies under thermal fatigue, mechanical bending and twisting, and shock and vibration conditions; solder joint reliability of flip chip (e.g., high-temperature and eutectic solder bumped flip chips on ceramic and PCB) assemblies under thermal fatigue, mechanical pulling, shearing, bending and twisting, and shock and vibration conditions; Solder joint reliability of CSP (e.g., LG Semicon's, Mitsubishi's, Motorola's, Tessera's, NEC's, nitto Denko's and Toshiba's) assemblies under thermal fatigue and mechanical bending conditions; Solder joint reliability of PQFP and TSOP assemblies under thermal fatigue, mechanical bending and twisting, and vibration conditions.

Assembly and Reliability of Lead-Free Solder Joints


Assembly and Reliability of Lead-Free Solder Joints

Author: John H. Lau

language: en

Publisher: Springer Nature

Release Date: 2020-05-29


DOWNLOAD





This book focuses on the assembly and reliability of lead-free solder joints. Both the principles and engineering practice are addressed, with more weight placed on the latter. This is achieved by providing in-depth studies on a number of major topics such as solder joints in conventional and advanced packaging components, commonly used lead-free materials, soldering processes, advanced specialty flux designs, characterization of lead-free solder joints, reliability testing and data analyses, design for reliability, and failure analyses for lead-free solder joints. Uniquely, the content not only addresses electronic manufacturing services (EMS) on the second-level interconnects, but also packaging assembly on the first-level interconnects and the semiconductor back-end on the 3D IC integration interconnects. Thus, the book offers an indispensable resource for the complete food chain of electronics products.

Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices


Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices

Author: Ephraim Suhir

language: en

Publisher: CRC Press

Release Date: 2021-01-28


DOWNLOAD





Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices addresses analytical (mathematical) modeling approaches aimed at understanding the underlying physics and mechanics of the behavior and performance of solder materials and solder joint interconnections of IC devices. The emphasis is on design for reliability, including probabilistic predictions of the solder lifetime. Describes how to use the developed methods of analytical predictive modeling to minimize thermal stresses and strains in solder joint of IC devices Shows how to build the preprocessing models in finite-element analyses (FEA) by comparing the FEA and analytical data Covers how to design the most effective test vehicles for testing solder joints Details how to design and organize, in addition to or sometimes even instead of highly accelerated life tests (HALT), highly focused and highly cost-effective failure oriented accelerated testing (FOAT) to understand the physic of failure of solder joint interconnections Outlines how to convert the low cycle fatigue conditions into elastic fatigue conditions and to assess the fatigue lifetime in such cases Illustrates ways to replace time- and labor-consuming, expensive, and possibly misleading temperature cycling tests with simpler and physically meaningful accelerated tests This book is aimed towards professionals in electronic and photonic packaging, electronic and optical materials, materials engineering, and mechanical design.