Soft Computing In Data Analytics

Download Soft Computing In Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Soft Computing In Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Soft Computing in Data Analytics

The volume contains original research findings, exchange of ideas and dissemination of innovative, practical development experiences in different fields of soft and advance computing. It provides insights into the International Conference on Soft Computing in Data Analytics (SCDA). It also concentrates on both theory and practices from around the world in all the areas of related disciplines of soft computing. The book provides rapid dissemination of important results in soft computing technologies, a fusion of research in fuzzy logic, evolutionary computations, neural science and neural network systems and chaos theory and chaotic systems, swarm based algorithms, etc. The book aims to cater the postgraduate students and researchers working in the discipline of computer science and engineering along with other engineering branches.
Soft Computing for Data Analytics, Classification Model, and Control

This book presents a set of soft computing approaches and their application in data analytics, classification model, and control. The basics of fuzzy logic implementation for advanced hybrid fuzzy driven optimization methods has been covered in the book. The various soft computing techniques, including Fuzzy Logic, Rough Sets, Neutrosophic Sets, Type-2 Fuzzy logic, Neural Networks, Generative Adversarial Networks, and Evolutionary Computation have been discussed and they are used on variety of applications including data analytics, classification model, and control. The book is divided into two thematic parts. The first thematic section covers the various soft computing approaches for text classification and data analysis, while the second section focuses on the fuzzy driven optimization methods for the control systems. The chapters has been written and edited by active researchers, which cover hypotheses and practical considerations; provide insights into the design of hybrid algorithms for applications in data analytics, classification model, and engineering control.
Soft Computing in Data Science

This book constitutes the refereed proceedings of the 6th International Conference on Soft Computing in Data Science, SCDS 2021, which was held virtually in November 2021. The 31 revised full papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections on AI techniques and applications; data analytics and technologies; data mining and image processing; machine & statistical learning.