Sobolev Spaces In Mathematics Iii

Download Sobolev Spaces In Mathematics Iii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sobolev Spaces In Mathematics Iii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Sobolev Spaces in Mathematics III

Author: Victor Isakov
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-12-02
This volume, marking the centenary of S.L. Sobolev’s birth, presents the latest the results on some important problems of mathematical physics. The book contains two short biographical articles and unique archive photos of S. Sobolev.
Sobolev Spaces

The Sobolev spaces, i. e. the classes of functions with derivatives in L , occupy p an outstanding place in analysis. During the last two decades a substantial contribution to the study of these spaces has been made; so now solutions to many important problems connected with them are known. In the present monograph we consider various aspects of Sobolev space theory. Attention is paid mainly to the so called imbedding theorems. Such theorems, originally established by S. L. Sobolev in the 1930s, proved to be a useful tool in functional analysis and in the theory of linear and nonlinear par tial differential equations. We list some questions considered in this book. 1. What are the requirements on the measure f1, for the inequality q
Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains

This book, which is based on several courses of lectures given by the author at the Independent University of Moscow, is devoted to Sobolev-type spaces and boundary value problems for linear elliptic partial differential equations. Its main focus is on problems in non-smooth (Lipschitz) domains for strongly elliptic systems. The author, who is a prominent expert in the theory of linear partial differential equations, spectral theory and pseudodifferential operators, has included his own very recent findings in the present book. The book is well suited as a modern graduate textbook, utilizing a thorough and clear format that strikes a good balance between the choice of material and the style of exposition. It can be used both as an introduction to recent advances in elliptic equations and boundary value problems and as a valuable survey and reference work. It also includes a good deal of new and extremely useful material not available in standard textbooks to date. Graduate and post-graduate students, as well as specialists working in the fields of partial differential equations, functional analysis, operator theory and mathematical physics will find this book particularly valuable.