Smoothing Filtering And Prediction Second Edition


Download Smoothing Filtering And Prediction Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Smoothing Filtering And Prediction Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Smoothing, Filtering and Prediction: Second Edition


Smoothing, Filtering and Prediction: Second Edition

Author: Garry Einicke

language: en

Publisher: Myidentifiers - Australian ISBN Agency

Release Date: 2019-02-27


DOWNLOAD





Scientists, engineers and the like are a strange lot. Unperturbed by societal norms, they direct their energies to finding better alternatives to existing theories and concocting solutions to unsolved problems. Driven by an insatiable curiosity, they record their observations and crunch the numbers. This tome is about the science of crunching. It's about digging out something of value from the detritus that others tend to leave behind. The described approaches involve constructing models to process the available data. Smoothing entails revisiting historical records in an endeavour to understand something of the past. Filtering refers to estimating what is happening currently, whereas prediction is concerned with hazarding a guess about what might happen next. This book describes the classical smoothing, filtering and prediction techniques together with some more recently developed embellishments for improving performance within applications. It aims to present the subject in an accessible way, so that it can serve as a practical guide for undergraduates and newcomers to the field. The material is organised as an eleven-lecture course. The foundations are laid in Chapters 1 and 2, which explain minimum-mean-square-error solution construction and asymptotic behaviour. Chapters 3 and 4 introduce continuous-time and discrete-time minimum-variance filtering. Generalisations for missing data, deterministic inputs, correlated noises, direct feedthrough terms, output estimation and equalisation are described. Chapter 5 simplifies the minimum-variance filtering results for steady-state problems. Observability, Riccati equation solution convergence, asymptotic stability and Wiener filter equivalence are discussed. Chapters 6 and 7 cover the subject of continuous-time and discrete-time smoothing. The main fixed-lag, fixed-point and fixed-interval smoother results are derived. It is shown that the minimum-variance fixed-interval smoother attains the best performance. Chapter 8 attends to parameter estimation. As the above-mentioned approaches all rely on knowledge of the underlying model parameters, maximum-likelihood techniques within expectation-maximisation algorithms for joint state and parameter estimation are described. Chapter 9 is concerned with robust techniques that accommodate uncertainties within problem specifications. An extra term within Riccati equations enables designers to trade-off average error and peak error performance. Chapter 10 applies the afore-mentioned linear techniques to nonlinear estimation problems. It is demonstrated that step-wise linearisations can be used within predictors, filters and smoothers, albeit by forsaking optimal performance guarantees. Chapter 11 rounds off the course by exploiting knowledge about transition probabilities. HMM and minimum-variance-HMM filters and smoothers are derived. The improved performance offered by these techniques needs to be reconciled against the significantly higher calculation overheads.

Bayesian Multiple Target Tracking, Second Edition


Bayesian Multiple Target Tracking, Second Edition

Author: Lawrence D. Stone

language: en

Publisher: Artech House

Release Date: 2013-12-01


DOWNLOAD





This second edition has undergone substantial revision from the 1999 first edition, recognizing that a lot has changed in the multiple target tracking field. One of the most dramatic changes is in the widespread use of particle filters to implement nonlinear, non-Gaussian Bayesian trackers. This book views multiple target tracking as a Bayesian inference problem. Within this framework it develops the theory of single target tracking, multiple target tracking, and likelihood ratio detection and tracking. In addition to providing a detailed description of a basic particle filter that implements the Bayesian single target recursion, this resource provides numerous examples that involve the use of particle filters. With these examples illustrating the developed concepts, algorithms, and approaches -- the book helps radar engineers develop tracking solutions when observations are non-linear functions of target state, when the target state distributions or measurement error distributions are not Gaussian, in low data rate and low signal to noise ratio situations, and when notions of contact and association are merged or unresolved among more than one target.

The Electrical Engineering Handbook,Second Edition


The Electrical Engineering Handbook,Second Edition

Author: Richard C. Dorf

language: en

Publisher: CRC Press

Release Date: 1997-09-26


DOWNLOAD





In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.