Small Scale Processes In Geophysical Fluid Flows


Download Small Scale Processes In Geophysical Fluid Flows PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Small Scale Processes In Geophysical Fluid Flows book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Small Scale Processes in Geophysical Fluid Flows


Small Scale Processes in Geophysical Fluid Flows

Author: Lakshmi H. Kantha

language: en

Publisher: Elsevier

Release Date: 2000-08-07


DOWNLOAD





While ocean waves are the most visible example of oceanic mixing processes, this macroscale mixing process represents but one end of the spectrum of mixing processes operating in the ocean. At the scale of a typical phytoplanktoic diatom or larval fish inhabiting these seas, the most important mixing processes occur on the molecular scale - at the scale of turbulence. Physical-biological interactions at this scale are of paramount importance to the productivity of the seas (fisheries) and the heat balance that controls large scale ocean climate phenomena such as El Niño and tornadoes. This book grew out of the need for a comprehensive treatment of the diverse elements of geophysical fluid flow at the microscale. Kantha and Clayson have arranged a logial exposition of the various mixing processes operating within and between the oceans and its boundaries with the atmosphere and ocean floor. The authors' intent is to develop a volume that would provide a comprehensive treatment of the fundamental elements of ocean mixing so that students, academics, and professional fluid dynamicists and oceanographers can access this essential information from one source. This volume will serve as both a valuable reference tool for mathematically inclined limnologists, oceanographers and fluid modelers.* Simple models of oceanic and atmospheric boundary layers are discussed* Comprehensive and up-to-date review* Useful for graduate level course* Essential for modeling the oceans and the atmosphere* Color Plates

Geophysical Fluid Dynamics II


Geophysical Fluid Dynamics II

Author: Emin Özsoy

language: en

Publisher: Springer Nature

Release Date: 2021-08-13


DOWNLOAD





This book develops a fundamental understanding of geophysical fluid dynamics based on a mathematical description of the flows of inhomogeneous fluids. It covers these topics: 1. development of the equations of motion for an inhomogeneous fluid 2. review of thermodynamics 3. thermodynamic and kinetic energy equations 4. equations of state for the atmosphere and the ocean, salt, and moisture effects 5. concepts of potential temperature and potential density 6. Boussinesq and quasi-geostrophic approximations 7. conservation equations for vorticity, mechanical and thermal energy instability theories, internal waves, mixing, convection, double-diffusion, stratified turbulence, fronts, intrusions, gravity currents Graduate students will be able to learn and apply the basic theory of geophysical fluid dynamics of inhomogeneous fluids on a rotating earth, including: 1. derivation of the governing equations for a stratified fluid starting from basic principles of physics 2. review of thermodynamics, equations of state, isothermal, adiabatic, isentropic changes 3. scaling of the equations, Boussinesq approximation, applied to the ocean and the atmosphere 4. examples of stratified flows at geophysical scales, steady and unsteady motions, inertia-gravity internal waves, quasi-geostrophic theory 5. vorticity and energy conservation in stratified fluids 6.boundary layer convection in stratified containers and basins

Handbook of Environmental Fluid Dynamics, Two-Volume Set


Handbook of Environmental Fluid Dynamics, Two-Volume Set

Author: Harindra Joseph Fernando

language: en

Publisher: CRC Press

Release Date: 2012-12-11


DOWNLOAD





With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, this two-volume handbook presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the field, along with critical discussions of environmental sustainability related to engineering aspects. The first volume provides a comprehensive overview of the fundamentals, and the second volume explores the interactions between engineered structures and natural flows.