Sliding Mode Based Analysis And Identification Of Vehicle Dynamics


Download Sliding Mode Based Analysis And Identification Of Vehicle Dynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sliding Mode Based Analysis And Identification Of Vehicle Dynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Sliding Mode Based Analysis and Identification of Vehicle Dynamics


Sliding Mode Based Analysis and Identification of Vehicle Dynamics

Author: Hocine Imine

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-07-14


DOWNLOAD





Vehicles are complex mechanical systems with strong nonlinear characteristics and which can present some uncertainties due to their dynamic parameters such as masses, inertias, suspension springs, tires side slip coefficients, etc. A vehicle is composed of many parts, namely the unsprung mass, the sprung mass, the suspension which makes the link between these two masses and therefore ensures passenger comfort, and also the pneumatic which absorbs the energy coming from the road and ensures contact between the vehicle and the road. In addition to its complexity and the presence of many nonlinearities and uncertainties, the presence of some external perturbations, such as the wind and the road inputs with its own characteristics (radius of curvature, longitudinal and lateral slop, road profile and skid resistance) can cause risks not only to the vehicle but also to passengers and other road users. Many methods have been developed in order to understand the behavior of a vehicle ( light and heavy vehicle), control it and assist the driver in order to avoid possible lane departures, rollover or jackknifing risks, to ensure a better passenger comfort by means of a suspension control and/or to estimate a safety speed and trajectory.

Sliding Mode Based Analysis and Identification of Vehicle Dynamics


Sliding Mode Based Analysis and Identification of Vehicle Dynamics

Author: Hocine Imine

language: en

Publisher: Springer

Release Date: 2011-07-14


DOWNLOAD





Vehicles are complex mechanical systems with strong nonlinear characteristics and which can present some uncertainties due to their dynamic parameters such as masses, inertias, suspension springs, tires side slip coefficients, etc. A vehicle is composed of many parts, namely the unsprung mass, the sprung mass, the suspension which makes the link between these two masses and therefore ensures passenger comfort, and also the pneumatic which absorbs the energy coming from the road and ensures contact between the vehicle and the road. In addition to its complexity and the presence of many nonlinearities and uncertainties, the presence of some external perturbations, such as the wind and the road inputs with its own characteristics (radius of curvature, longitudinal and lateral slop, road profile and skid resistance) can cause risks not only to the vehicle but also to passengers and other road users. Many methods have been developed in order to understand the behavior of a vehicle ( light and heavy vehicle), control it and assist the driver in order to avoid possible lane departures, rollover or jackknifing risks, to ensure a better passenger comfort by means of a suspension control and/or to estimate a safety speed and trajectory.

Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications


Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications

Author: Shihua Li

language: en

Publisher: Springer

Release Date: 2017-08-10


DOWNLOAD





This book reflects the latest developments in variable structure systems (VSS) and sliding mode control (SMC), highlighting advances in various branches of the VSS/SMC field, e.g., from conventional SMC to high-order SMC, from the continuous-time domain to the discrete-time domain, from theories to applications, etc. The book consists of three parts and 16 chapters: in the first part, new VSS/SMC algorithms are proposed and their properties are analyzed, while the second focuses on the use of VSS/SMC techniques to solve a variety of control problems; the third part examines the applications of VSS/SMC to real-time systems. The book introduces postgraduates and researchers to the state-of-the-art in VSS/SMC field, including the theory, methodology, and applications. Relative academic disciplines include Automation, Mathematics, Electrical Engineering, Mechanical Engineering, Instrument Science and Engineering, Electronic Engineering, Computer Science and Technology, Transportation Engineering, Energy and Power Engineering, etc.