Singularities And Low Dimensional Topology

Download Singularities And Low Dimensional Topology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Singularities And Low Dimensional Topology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Singularities and Low Dimensional Topology

Author: Javier Fernández de Bobadilla
language: en
Publisher: Springer Nature
Release Date: 2024-10-09
The special semester 'Singularities and low dimensional topology' in the Spring of 2023 at the Erdős Center (Budapest) brought together algebraic geometers and topologists to discuss and explore the strong connection between surface singularities and topological properties of three- and four-dimensional manifolds. The semester featured a Winter School (with four lecture series) and several focused weeks. This volume contains the notes of the lecture series of the Winter School and some of the lecture notes from the focused weeks. Topics covered in this collection range from algebraic geometry of complex curves, lattice homology of curve and surface singularities to novel results in smooth four-dimensional topology and grid homology, and to Seiberg-Witten homotopy theory and ‘spacification’ of knot invariants. Some of these topics are already well-documented in the literature, and the lectures aim to provide a new perspective and fresh connections. Other topics are rather new and have been covered only in research papers. We hope that this volume will be useful not only for advanced graduate students and early-stage researchers, but also for the more experienced geometers and topologists who want to be informed about the latest developments in the field.
Singularities and Their Interaction with Geometry and Low Dimensional Topology

Author: Javier Fernández de Bobadilla
language: en
Publisher: Springer Nature
Release Date: 2021-05-27
The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the “Némethi60: Geometry and Topology of Singularities” conference held at the Alfréd Rényi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor András Némethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.
Deformations of Surface Singularities

Author: Andras Némethi
language: en
Publisher: Springer Science & Business Media
Release Date: 2014-01-24
The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems and examples. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry. This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several open problems. Recently several connections were established with low dimensional topology, symplectic geometry and theory of Stein fillings. This created an intense mathematical activity with spectacular bridges between the two areas. The theory of deformation of singularities is the key object in these connections.