Simulation With Entropy Thermodynamics

Download Simulation With Entropy Thermodynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Simulation With Entropy Thermodynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Simulation with Entropy Thermodynamics

Beyond its identification with the second law of thermodynamics, entropy is a formidable tool for describing systems in their relationship with their environment. This book proposes to go through some of these situations where the formulation of entropy, and more precisely, the production of entropy in out-of-equilibrium processes, makes it possible to forge an approach to the behavior of very different systems. Whether for dimensioning structures; influencing parameter variability; or optimizing power, efficiency, or waste heat reduction, simulations based on entropy production offer a tool that is both compact and reliable. In the case of systems marked by complexity, it appears to be the only way. In that sense, realistic optimization can be carried out, integrating within the same framework both the system and all the constraints and boundary conditions that define it. Simulations based on entropy give the researcher a powerful analytical framework that crosses the disciplines of physics and links them together.
Simulation with Entropy Thermodynamics

Beyond its identification with the second law of thermodynamics, entropy is a formidable tool for describing systems in their relationship with their environment. This book proposes to go through some of these situations where the formulation of entropy, and more precisely, the production of entropy in out-of-equilibrium processes, makes it possible to forge an approach to the behavior of very different systems. Whether for dimensioning structures; influencing parameter variability; or optimizing power, efficiency, or waste heat reduction, simulations based on entropy production offer a tool that is both compact and reliable. In the case of systems marked by complexity, it appears to be the only way. In that sense, realistic optimization can be carried out, integrating within the same framework both the system and all the constraints and boundary conditions that define it. Simulations based on entropy give the researcher a powerful analytical framework that crosses the disciplines of physics and links them together.
Simulation with Entropy in Engineering Thermodynamics

Author: Jean Thoma
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-04-27
It is with great pleasure that we present this book to the public. In principle it is about thermodynamics, especially the simulation of thermo?uid systems. In popular opinion, thermodynamics is considered to be highly abstract and di?cult to comprehend with its many symbols. We endeavor to show the reader how simple and beautiful thermodynamics really is. To achieve this simplicity we apply two innovations: Forus,entropyisasubstance-likeconcept,akindofthermalcharge,analogous to the well-known electric charge, and not the abstract and incomprehensible Clausius integral. This is by no means a new idea: apart from Sadi Carnot himself, people such as Callendar (1911), Job (1971), Falk (1976) and Fuchs (1996) all adopt the same point of view. We stress where thermal charge is analogous with electric charge and also point out the di?erences between them. To represent thermal systems we use Bondgraphs (BG), which are admirably suited to this purpose. They allow us to avoid many complex equations with numerous subscripts and superscripts. Of course, literature on BG abounds, including three books by present co-author Prof. Thoma and several other books published by Springer. We use BG more as a means to clarify the nature of physical variables and theiranalogiesinother?eldsratherthanfromtheviewpointofelectronicdata processing. For example, the di?erence between c (speci?c heat at constant v volume)andc (speci?cheatatconstantpressure)iscommontoallmultipo- p Cs; and BG make this very clear.