Simulation Optimization In Inventory Management

Download Simulation Optimization In Inventory Management PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Simulation Optimization In Inventory Management book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Simulation Optimization in Inventory Management

Simulation optimization is increasingly popular for solving complicated and mathematically intractable real-world business problems. This article reviews recent applications of simulation optimization in inventory management. Following a brief discussion of different simulation optimization techniques, this article categorizes recent contributions on the basis of their simulation optimization technique and their inventory characteristics. In highlighting both trends and gaps in the research field, this review suggests avenues for further research.
Uncertainty Management in Simulation-Optimization of Complex Systems

This book aims at illustrating strategies to account for uncertainty in complex systems described by computer simulations. When optimizing the performances of these systems, accounting or neglecting uncertainty may lead to completely different results; therefore, uncertainty management is a major issues in simulation-optimization. Because of its wide field of applications, simulation-optimization issues have been addressed by different communities with different methods, and from slightly different perspectives. Alternative approaches have been developed, also depending on the application context, without any well-established method clearly outperforming the others. This editorial project brings together — as chapter contributors — researchers from different (though interrelated) areas; namely, statistical methods, experimental design, stochastic programming, global optimization, metamodeling, and design and analysis of computer simulation experiments. Editors’ goal is to take advantage of such a multidisciplinary environment, to offer to the readers a much deeper understanding of the commonalities and differences of the various approaches to simulation-based optimization, especially in uncertain environments. Editors aim to offer a bibliographic reference on the topic, enabling interested readers to learn about the state-of-the-art in this research area, also accounting for potential real-world applications to improve also the state-of-the-practice. Besides researchers and scientists of the field, the primary audience for the proposed book includes PhD students, academic teachers, as well as practitioners and professionals. Each of these categories of potential readers present adequate channels for marketing actions, e.g. scientific, academic or professional societies, internet-based communities, and authors or buyers of related publications.
Production and Inventory Management with Substitutions

Author: J. Christian Lang
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-11-25
Quantitativeapproachesforsolvingproductionplanningandinventorymanagement problems in industry have gained growing importance in the past years. Due to the increasinguse of AdvancedPlanningSystems, a widespreadpracticalapplicationof the sophisticated optimization models and algorithms developed by the Production Management and Operations Research community now seem within reach. The possibility that productscan be replaced by certain substitute productsexists in various application areas of production planning and inventory management. Substitutions can be useful for a number of reasons, among others to circ- vent production and supply bottlenecks and disruptions, increase the service level, reduce setup costs and times, and lower inventories and thereby decrease ca- tal lockup. Considering the current trend in industry towards shorter product life cycles and greater product variety, the importance of substitutions appears likely to grow. Closely related to substitutions are ?exible bills-of-materials and recipes in multi-level production systems. However, so far, the aspect of substitutions has not attracted much attention in academic literature. Existing lot-sizing models matching complex requirements of industrial optimization problems (e.g., constrained capacities, sequence-dependent setups, multiple resources) such as the Capacitated Lot-Sizing Problem with Sequence-Dependent Setups (CLSD) and the General Lot-Sizing and Scheduling Problem for Multiple Production Stages (GLSPMS) do not feature in substitution options.