Simulation Du Comportement D Un Polymere Par Un Modele D Hyper Visco Hysteresis
Download Simulation Du Comportement D Un Polymere Par Un Modele D Hyper Visco Hysteresis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Simulation Du Comportement D Un Polymere Par Un Modele D Hyper Visco Hysteresis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Simulation du comportement d'un polymère par un modèle d'hyper-visco-hystérésis
Ce travail est consacré à l'étude expérimentale et numérique du comportement mécanique des matériaux polymères semi-cristallins, en l'occurrence le polypropylène. Ces matériaux sont souvent destinés aux pièces de sécurité dans le domaine de l'automobile. Ils ont l'avantage d'être peu onéreux et d'avoir une bonne résistance aux chocs. Ils présentent également l'avantage d'être recyclables. L'étude porte sur le comportement mécanique en statique et en dynamique rapide de trois nuances de polypropylène. Le but est d'identifier un modèle de comportement original de type Hyper- Visco-Hystérésis. Ce modèle, déjà utilisé sur les alliages à mémoire de forme, les aciers et les élastomères doit être adapté pour les polymères semi-cristallins. Il intègre de manière additive des contributions en contraintes de type hyper-élastique, visqueuse, et hystérétique. Des essais quasi-statiques (traction, relaxation, cyclique, torsion) et dynamiques rapides (essais de traction pour des vitesses de déformation de l'ordre de 200 's-l) ont été effectués pour constituer une base de données expérimentale. Cette base de données nous a permis ensuite d'identifier les différents paramètres du modèle de comportement en tenant compte de tous les types de sollicitations mis en place (statique ou dynamique) en regard des propriétés physico-chimiques du matériau. Une fois ce comportement connu, des simulations d'essais de torsion et de traction rapide, effectuées sur le code par éléments finis en grandes transformations (HEREZH++), ont permis de montrer la validité du modèle de comportement.
Modélisation thermomécanique visco-hyperélastique du comportement d'un polymère semi-cristallin
Cette étude doctorale porte sur une matrice polyamide 6.6, utilisé dans les matériaux renforcé fibre de verre courtes, et consiste en la mise en place d'une modélisation thermomécanique, autour de la transition mécanique α du polymère. Une première partie consiste en la mise en évidence expérimentale du comportement thermomécanique du matériau de l'étude. Une campagne d'essais mécanique en traction et cisaillement a été menée, où un effort important sur le protocole expérimental a été mené. Les techniques d'analyse de déformation par corrélation d'images, et de suivi pyrométrique de la température ont, par exemple, été utilisées. La construction de la base expérimentale met à profit les équivalences vitesses / températures, sur une gamme de température comprise entre -10° et +60°, et une gamme de vitesse de déformation comprise entre 10-4 et 10 s-1, soit 21 décades suivant la grandeur caractéristique de ces essais, i.e. la vitesse de déformation équivalente à une température de référence. Une seconde partie consiste en un développement d'un modèle de comportement visco-hyperélastique, décrit dans le cadre formel de la thermodynamique des processus irréversible, et physiquement basé sur les modèles de statistique de chaînes modifiés. L'introduction d'un processus de relaxation, d'une partie de l'énergie élastique emmagasinée dans le réseau comme source d'anélasticité entropique a été proposée, puis confrontée avec la base expérimentale. Le modèle prend en compte les couplages thermomécaniques forts, et permet, avec un nombre de paramètres réduits, de représenter le comportement global de l'ensemble de nos essais expérimentaux.
Étude du refroidissement d'un polymère chaud sur une paroi métallique froide
Dans l'industrie de la mise en forme des polymères, il est bien connu que les conditions du procédé influencent fortement la qualité du produit final. La simulation numérique de l'ensemble du procédé est alors nécessaire pour optimiser et comprendre l'interaction entre le procédé, la structure et les propriétés du matériau final. Dans la mise en forme par injection moulage, l'un des problèmes rencontrés dans la simulation numérique est le suivi du front polymère-air (ou de l'interface) lors de la phase de remplissage. La précision de la détermination de l'interface est importante pour décrire correctement les champs de vitesse, la distribution, la pression et l’effet fontaine. Pour ces raisons, l’objectif de ce travail est double. : i- développer un modèle numérique qui décrit un écoulement anisotherme et non-Newtonien simulant la phase de remplissage dans le procédé d’injection moulage. ii- appliquer ce modèle pour une étude fine du comportement du polymère lors de son écoulement dans le moule, afin d’analyser l’interaction moule-polymère aux interfaces. La méthode de Level-Set, corrigée par une méthode de pénalité afin de la rendre conservative, est utilisée pour représenter le front polymère air dans le moule. Elle est d’abord validée dans différentes configurations, puis appliquée pour la simulation du remplissage d’une cavité rectangulaire par l’écoulement d’un fluide non-Newtonien et anisotherme. Pour ce faire, les équation, de Navier-Stokes, de continuité et d’énergie sont couplées pour décrire l’écoulement et le comportement thermique du polymère fondu. Une méthode d’éléments finis est utilisée pour résoudre ces équations. Les résultats montrent clairement l’effet fontaine. La température, la vitesse, la pression et la viscosité sont calculées et l'influence de la résistance thermique de contact entre le polymère et le moule en métal est également étudiée et ce pour différentes conditions d’injection.