Simplified Neutrosophic Sets Based On Interval Dependent Degree For Multi Criteria Group Decision Making Problems


Download Simplified Neutrosophic Sets Based On Interval Dependent Degree For Multi Criteria Group Decision Making Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Simplified Neutrosophic Sets Based On Interval Dependent Degree For Multi Criteria Group Decision Making Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Simplified Neutrosophic Sets Based on Interval Dependent Degree for Multi-Criteria Group Decision-Making Problems


Simplified Neutrosophic Sets Based on Interval Dependent Degree for Multi-Criteria Group Decision-Making Problems

Author: Xu Libo

language: en

Publisher: Infinite Study

Release Date:


DOWNLOAD





In this paper, a new approach and framework based on the interval dependent degree for multi-criteria group decision-making (MCGDM) problems with simplified neutrosophic sets (SNSs) is proposed. Firstly, the simplified dependent function and distribution function are defined. Then, they are integrated into the interval dependent function which contains interval computing and distribution information of the intervals. Subsequently, the interval transformation operator is defined to convert simplified neutrosophic numbers (SNNs) into intervals, and then the interval dependent function for SNNs is deduced. Finally, an example is provided to verify the feasibility and effectiveness of the proposed method, together with its comparative analysis. In addition, uncertainty analysis, which can reflect the dynamic change of the final result caused by changes in the decision makers’ preferences, is performed in different distribution function situations. That increases the reliability and accuracy of the result.

Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets


Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

Author: Florentin Smarandache

language: en

Publisher: MDPI

Release Date: 2019-04-04


DOWNLOAD





Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.

A Method of Determining Multi-AttributeWeights Based on Single-Valued Neutrosophic Numbers and Its Application in TODIM


A Method of Determining Multi-AttributeWeights Based on Single-Valued Neutrosophic Numbers and Its Application in TODIM

Author: Dongsheng Xu

language: en

Publisher: Infinite Study

Release Date:


DOWNLOAD





In this paper, the TODIM method is used to solve the multi-attribute decision-making problem with unknown attribute weight in venture capital, and the decision information is given in the form of single-valued neutrosophic numbers. In order to consider the objectivity and subjectivity of decision-making problems reasonably, the optimal weight is obtained by combining subjective weights and objective weights. Subjective weights are given directly by decision makers. Objective weights are obtained by establishing a weight optimization model with known decision information, then this method will compare with entropy weight method. These simulation results also validate the effectiveness and reasonableness of this proposed method.