Simple Mathematical Models Of Gene Regulatory Dynamics

Download Simple Mathematical Models Of Gene Regulatory Dynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Simple Mathematical Models Of Gene Regulatory Dynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Simple Mathematical Models of Gene Regulatory Dynamics

This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduates students and young researchers with a solid mathematical background (calculus, ordinary differential equations, and probability theory at a minimum), as well as with basic notions of biochemistry, cell biology, and molecular biology. They are meant to serve as a readable and brief entry point into a field that is currently highly active, and will allow the reader to grasp the current state of research and so prepare them for defining and tackling new research problems.
Probabilistic Boolean Networks

This is the first comprehensive treatment of probabilistic Boolean networks (PBNs), an important model class for studying genetic regulatory networks. This book covers basic model properties, including the relationships between network structure and dynamics, steady-state analysis, and relationships to other model classes." "Researchers in mathematics, computer science, and engineering are exposed to important applications in systems biology and presented with ample opportunities for developing new approaches and methods. The book is also appropriate for advanced undergraduates, graduate students, and scientists working in the fields of computational biology, genomic signal processing, control and systems theory, and computer science.
Computational Modeling of Gene Regulatory Networks

This book serves as an introduction to the myriad computational approaches to gene regulatory modeling and analysis, and is written specifically with experimental biologists in mind. Mathematical jargon is avoided and explanations are given in intuitive terms. In cases where equations are unavoidable, they are derived from first principles or, at the very least, an intuitive description is provided. Extensive examples and a large number of model descriptions are provided for use in both classroom exercises as well as self-guided exploration and learning. As such, the book is ideal for self-learning and also as the basis of a semester-long course for undergraduate and graduate students in molecular biology, bioengineering, genome sciences, or systems biology.