Silicon Quantum Integrated Circuits

Download Silicon Quantum Integrated Circuits PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Silicon Quantum Integrated Circuits book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Silicon Quantum Integrated Circuits

Author: E. Kasper
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-01-19
Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.
Silicon Optoelectronic Integrated Circuits

This book reviews various topics in optoelectronics and the design of microelectronic circuits. It introduces readers to the essential features of optical absorption and device physics of photodetectors, as well as their integration in modern CMOS and BiCMOS technologies. This information provides the basis for understanding the underlying mechanisms of Optoelectronic Integrated Circuits (OEICs), which are described in the main part of the book. In the second edition of this book, new and outstanding integrated high-bandwidth pin photodiodes as well as avalanche photodiodes in the linear mode and in the Geiger mode are introduced. To cover the topic comprehensively, the book presents detailed descriptions of OEICs for a wide range of applications: from various optical sensors, smart sensors, image sensors, 3D-sensors and optical storage systems, to fiber receivers and receivers for optical wireless communication, as well as single-photon detection. This new edition also reflects the latest trends in OEIC research on integrated optical receivers at the quantum limit and electronic-photonic integration, and highlights outstanding 3D-integrated application examples like a multi-node optical switch, an optical transceiver, and a high-resolution 3D sensor.
Strain-Engineered MOSFETs

Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in strain-engineered MOSFETS implemented in high-mobility substrates such as, Ge, SiGe, strained-Si, ultrathin germanium-on-insulator platforms, combined with high-k insulators and metal-gate. It covers the materials aspects, principles, and design of advanced devices, fabrication, and applications. It also presents a full technology computer aided design (TCAD) methodology for strain-engineering in Si-CMOS technology involving data flow from process simulation to process variability simulation via device simulation and generation of SPICE process compact models for manufacturing for yield optimization. Microelectronics fabrication is facing serious challenges due to the introduction of new materials in manufacturing and fundamental limitations of nanoscale devices that result in increasing unpredictability in the characteristics of the devices. The down scaling of CMOS technologies has brought about the increased variability of key parameters affecting the performance of integrated circuits. This book provides a single text that combines coverage of the strain-engineered MOSFETS and their modeling using TCAD, making it a tool for process technology development and the design of strain-engineered MOSFETs.