Silicides For Vlsi Applications

Download Silicides For Vlsi Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Silicides For Vlsi Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Silicides for VLSI Applications

Most of the subject matter of this book has previously been available only in the form of research papers and review articles. I have not attempted to refer to all the published papers. The reader may find it advantageous to refer to the references listed.
Handbook of Semiconductor Manufacturing Technology

The Handbook of Semiconductor Manufacturing Technology describes the individual processes and manufacturing control, support, and infrastructure technologies of silicon-based integrated-circuit manufacturing, many of which are also applicable for building devices on other semiconductor substrates. Discussing ion implantation, rapid thermal processing, photomask fabrication, chip testing, and plasma etching, the editors explore current and anticipated equipment, devices, materials, and practices of silicon-based manufacturing. The book includes a foreword by Jack S. Kilby, cowinner of the Nobel Prize in Physics 2000 "for his part in the invention of the integrated circuit."
Semiconducting Silicides

Author: Victor E. Borisenko
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-07
Semiconductors are well known as the main materials of modem solid-state electronics. They have held the attention of researches and engineers since the brilliant invention of the semiconductor transistor by Bardeen, Brattain and v V Shockley in the middle ofthe 20th century. Silicon, germanium, AIIIB and AIIB ) compounds have been widely used in discrete semiconductor devices and microelectronic and nanoelectronic integrated systems. Each ofthese materials has separately met specific physical and technological requirements to provide formation ofsolid-state structures with the best electronic or optical performance. However, attempts to combine them within integrated circuit appear to be ineffective or even technologically impossible. Thus, material and related technological compatibilities are important for further progress, particularly in microelectronics, optoelectronics and nanoelectronics. This stimulates an increasing interest in silicides and silicon-germanium alloys, which provide new prospects for silicon-based integration. Elements from the Periodic Table form more than 180 silicides, which are chemical compounds of silicon with different metals. Most of them, except the silicides of lanthanides and actinides, are shown in Table 1. Along with appropriate compatibility with silicon and easy formation by silicidation in a metal-silicon couple, silicides are characterized by high thermal stability and resistance to oxidation. The majority ofthem are metallic and have low resistivity. Exactly metallic silicides were first employed for interconnections, gates in MOS structures, ohmic contacts, and Schottky barriers in silicon integrated circuits. For a comprehensive overview of their properties and general features of the formation technology the reader may address the books and reviews [1-10].