Sign Based Methods In Linear Statistical Models

Download Sign Based Methods In Linear Statistical Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sign Based Methods In Linear Statistical Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Sign-based Methods in Linear Statistical Models

Author: M. V. Boldin
language: en
Publisher: American Mathematical Soc.
Release Date: 1997-04-22
For nonparametric statistics, the last half of this century was the time when rank-based methods originated, were vigorously developed, reached maturity, and received wide recognition. The rank-based approach in statistics consists in ranking the observed values and using only the ranks rather than the original numerical data. In fitting relationships to observed data, the ranks of residuals from the fitted dependence are used. The signed-based approach is based on the assumption that random errors take positive or negative values with equal probabilities. Under this assumption, the sign procedures are distribution-free. These procedures are robust to violations of model assumptions, for instance, to even a considerable number of gross errors in observations. In addition, sign procedures have fairly high relative asymptotic efficiency, in spite of the obvious loss of information incurred by the use of signs instead of the corresponding numerical values. In this work, sign-based methods in the framework of linear models are developed. In the first part of the book, there are linear and factor models involving independent observations. In the second part, linear models of time series, primarily autoregressive models, are considered.
Linear Models in Statistics

Author: Alvin C. Rencher
language: en
Publisher: John Wiley & Sons
Release Date: 2008-01-07
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Sign-based Methods in Linear Statistical Models

For nonparametric statistics, the last half of this century was the time when rank-based methods originated, were vigorously developed, reached maturity, and received wide recognition. The rank-based approach in statistics consists in ranking the observed values and using only the ranks rather than the original numerical data. In fitting relationships to observed data, the ranks of residuals from the fitted dependence are used. The signed-based approach is based on the assumption that random errors take positive or negative values with equal probabilities. Under this assumption, the sign proce.