Shrinkage Estimation For Mean And Covariance Matrices

Download Shrinkage Estimation For Mean And Covariance Matrices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Shrinkage Estimation For Mean And Covariance Matrices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Shrinkage Estimation for Mean and Covariance Matrices

This book provides a self-contained introduction to shrinkage estimation for matrix-variate normal distribution models. More specifically, it presents recent techniques and results in estimation of mean and covariance matrices with a high-dimensional setting that implies singularity of the sample covariance matrix. Such high-dimensional models can be analyzed by using the same arguments as for low-dimensional models, thus yielding a unified approach to both high- and low-dimensional shrinkage estimations. The unified shrinkage approach not only integrates modern and classical shrinkage estimation, but is also required for further development of the field. Beginning with the notion of decision-theoretic estimation, this book explains matrix theory, group invariance, and other mathematical tools for finding better estimators. It also includes examples of shrinkage estimators for improving standard estimators, such as least squares, maximum likelihood, and minimum risk invariant estimators, and discusses the historical background and related topics in decision-theoretic estimation of parameter matrices. This book is useful for researchers and graduate students in various fields requiring data analysis skills as well as in mathematical statistics.
High-Dimensional Covariance Matrix Estimation: Shrinkage Toward a Diagonal Target

Author: Mr. Sakai Ando
language: en
Publisher: International Monetary Fund
Release Date: 2023-12-08
This paper proposes a novel shrinkage estimator for high-dimensional covariance matrices by extending the Oracle Approximating Shrinkage (OAS) of Chen et al. (2009) to target the diagonal elements of the sample covariance matrix. We derive the closed-form solution of the shrinkage parameter and show by simulation that, when the diagonal elements of the true covariance matrix exhibit substantial variation, our method reduces the Mean Squared Error, compared with the OAS that targets an average variance. The improvement is larger when the true covariance matrix is sparser. Our method also reduces the Mean Squared Error for the inverse of the covariance matrix.
Handbook of Financial Econometrics

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections