Shintani Zeta Functions

Download Shintani Zeta Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Shintani Zeta Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Shintani Zeta Functions

Author: Akihiko Yukie
language: en
Publisher: Cambridge University Press
Release Date: 1993
The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory.
Shintani Zeta Functions

The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory.
Elementary Theory of L-functions and Eisenstein Series

Author: Haruzo Hida
language: en
Publisher: Cambridge University Press
Release Date: 1993-02-11
The theory of p-adic and classic modular forms, and the study of arithmetic and p-adic L-functions has proved to be a fruitful area of mathematics over the last decade. Professor Hida has given courses on these topics in the USA, Japan, and in France, and in this book provides the reader with an elementary but detailed insight into the theory of L-functions. The presentation is self contained and concise, and the subject is approached using only basic tools from complex analysis and cohomology theory. Graduate students wishing to know more about L-functions will find that this book offers a unique introduction to this fascinating branch of mathematics.