Serverless Deep Learning With Tensorflow And Aws Lambda


Download Serverless Deep Learning With Tensorflow And Aws Lambda PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Serverless Deep Learning With Tensorflow And Aws Lambda book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Hands-On Serverless Deep Learning with TensorFlow and AWS Lambda


Hands-On Serverless Deep Learning with TensorFlow and AWS Lambda

Author: Rustem Feyzkhanov

language: en

Publisher: Impackt Publishing

Release Date: 2019-01-31


DOWNLOAD





Use the serverless computing approach to save time and money Key Features Save your time by deploying deep learning models with ease using the AWS serverless infrastructure Get a solid grip on AWS services and use them with TensorFlow for efficient deep learning Includes tips, tricks and best practices on serverless deep learning that you can use in a production environment Book Description One of the main problems with deep learning models is finding the right way to deploy them within the company's IT infrastructure. Serverless architecture changes the rules of the game--instead of thinking about cluster management, scalability, and query processing, it allows us to focus specifically on training the model. This book prepares you to use your own custom-trained models with AWS Lambda to achieve a simplified serverless computing approach without spending much time and money. You will use AWS Services to deploy TensorFlow models without spending hours training and deploying them. You'll learn to deploy with serverless infrastructures, create APIs, process pipelines, and more with the tips included in this book. By the end of the book, you will have implemented your own project that demonstrates how to use AWS Lambda effectively so as to serve your TensorFlow models in the best possible way. What you will learn Gain practical experience by working hands-on with serverless infrastructures (AWS Lambda) Export and deploy deep learning models using Tensorflow Build a solid base in AWS and its various functions Create a deep learning API using AWS Lambda Look at the AWS API gateway Create deep learning processing pipelines using AWS functions Create deep learning production pipelines using AWS Lambda and AWS Step Function Who this book is for This book will benefit data scientists who want to learn how to deploy models easily and beginners who want to learn about deploying into the cloud. No prior knowledge of TensorFlow or AWS is required.

Serverless Deep Learning with TensorFlow and AWS Lambda


Serverless Deep Learning with TensorFlow and AWS Lambda

Author: Rustem Feyzkhanov

language: en

Publisher:

Release Date: 2018


DOWNLOAD





"One of the main problems with deep learning models is finding the right way to deploy them within the company's IT infrastructure. Serverless architecture changes the rules of the game ... it allows us to focus specifically on training the model. This course prepares you to use your own custom-trained models with AWS Lambda to achieve a simplified serverless computing approach without spending much time and money."--Resource description page.

Machine Learning Bookcamp


Machine Learning Bookcamp

Author: Alexey Grigorev

language: en

Publisher: Simon and Schuster

Release Date: 2021-11-23


DOWNLOAD





Time to flex your machine learning muscles! Take on the carefully designed challenges of the Machine Learning Bookcamp and master essential ML techniques through practical application. Summary In Machine Learning Bookcamp you will: Collect and clean data for training models Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images Deploy ML models to a production-ready environment The only way to learn is to practice! In Machine Learning Bookcamp, you’ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image analysis, each new project builds on what you’ve learned in previous chapters. You’ll build a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Master key machine learning concepts as you build actual projects! Machine learning is what you need for analyzing customer behavior, predicting price trends, evaluating risk, and much more. To master ML, you need great examples, clear explanations, and lots of practice. This book delivers all three! About the book Machine Learning Bookcamp presents realistic, practical machine learning scenarios, along with crystal-clear coverage of key concepts. In it, you’ll complete engaging projects, such as creating a car price predictor using linear regression and deploying a churn prediction service. You’ll go beyond the algorithms and explore important techniques like deploying ML applications on serverless systems and serving models with Kubernetes and Kubeflow. Dig in, get your hands dirty, and have fun building your ML skills! What's inside Collect and clean data for training models Use popular Python tools, including NumPy, Scikit-Learn, and TensorFlow Deploy ML models to a production-ready environment About the reader Python programming skills assumed. No previous machine learning knowledge is required. About the author Alexey Grigorev is a principal data scientist at OLX Group. He runs DataTalks.Club, a community of people who love data. Table of Contents 1 Introduction to machine learning 2 Machine learning for regression 3 Machine learning for classification 4 Evaluation metrics for classification 5 Deploying machine learning models 6 Decision trees and ensemble learning 7 Neural networks and deep learning 8 Serverless deep learning 9 Serving models with Kubernetes and Kubeflow