Sequence Statistics

Download Sequence Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sequence Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Sequence Data Mining

Author: Guozhu Dong
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-10-31
Understanding sequence data, and the ability to utilize this hidden knowledge, will create a significant impact on many aspects of our society. Examples of sequence data include DNA, protein, customer purchase history, web surfing history, and more. This book provides thorough coverage of the existing results on sequence data mining as well as pattern types and associated pattern mining methods. It offers balanced coverage on data mining and sequence data analysis, allowing readers to access the state-of-the-art results in one place.
Statistical Analysis of Next Generation Sequencing Data

Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.
Next-Generation Sequencing and Sequence Data Analysis

Author: Kuo Ping Chiu
language: en
Publisher: Bentham Science Publishers
Release Date: 2015-11-04
Nucleic acid sequencing techniques have enabled researchers to determine the exact order of base pairs - and by extension, the information present - in the genome of living organisms. Consequently, our understanding of this information and its link to genetic expression at molecular and cellular levels has lead to rapid advances in biology, genetics, biotechnology and medicine. Next-Generation Sequencing and Sequence Data Analysis is a brief primer on DNA sequencing techniques and methods used to analyze sequence data. Readers will learn about recent concepts and methods in genomics such as sequence library preparation, cluster generation for PCR technologies, PED sequencing, genome assembly, exome sequencing, transcriptomics and more. This book serves as a textbook for students undertaking courses in bioinformatics and laboratory methods in applied biology. General readers interested in learning about DNA sequencing techniques may also benefit from the simple format of information presented in the book.