Separation Logic For High Level Synthesis

Download Separation Logic For High Level Synthesis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Separation Logic For High Level Synthesis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Separation Logic for High-level Synthesis

This book presents novel compiler techniques, which combine a rigorous mathematical framework, novel program analyses and digital hardware design to advance current high-level synthesis tools and extend their scope beyond the industrial ‘state of the art’. Implementing computation on customised digital hardware plays an increasingly important role in the quest for energy-efficient high-performance computing. Field-programmable gate arrays (FPGAs) gain efficiency by encoding the computing task into the chip’s physical circuitry and are gaining rapidly increasing importance in the processor market, especially after recent announcements of large-scale deployments in the data centre. This is driving, more than ever, the demand for higher design entry abstraction levels, such as the automatic circuit synthesis from high-level languages (high-level synthesis). The techniques in this book apply formal reasoning to high-level synthesis in the context of demonstrably practical applications. /pp
The Synthesis Approach to Digital System Design

Author: Petra Michel
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Over the past decade there has been a dramatic change in the role played by design automation for electronic systems. Ten years ago, integrated circuit (IC) designers were content to use the computer for circuit, logic, and limited amounts of high-level simulation, as well as for capturing the digitized mask layouts used for IC manufacture. The tools were only aids to design-the designer could always find a way to implement the chip or board manually if the tools failed or if they did not give acceptable results. Today, however, design technology plays an indispensable role in the design ofelectronic systems and is critical to achieving time-to-market, cost, and performance targets. In less than ten years, designers have come to rely on automatic or semi automatic CAD systems for the physical design ofcomplex ICs containing over a million transistors. In the past three years, practical logic synthesis systems that take into account both cost and performance have become a commercial reality and many designers have already relinquished control ofthe logic netlist level of design to automatic computer aids. To date, only in certain well-defined areas, especially digital signal process ing and telecommunications. have higher-level design methods and tools found significant success. However, the forces of time-to-market and growing system complexity will demand the broad-based adoption of high-level, automated methods and tools over the next few years.
FPGAs for Software Programmers

This book makes powerful Field Programmable Gate Array (FPGA) and reconfigurable technology accessible to software engineers by covering different state-of-the-art high-level synthesis approaches (e.g., OpenCL and several C-to-gates compilers). It introduces FPGA technology, its programming model, and how various applications can be implemented on FPGAs without going through low-level hardware design phases. Readers will get a realistic sense for problems that are suited for FPGAs and how to implement them from a software designer’s point of view. The authors demonstrate that FPGAs and their programming model reflect the needs of stream processing problems much better than traditional CPU or GPU architectures, making them well-suited for a wide variety of systems, from embedded systems performing sensor processing to large setups for Big Data number crunching. This book serves as an invaluable tool for software designers and FPGA design engineers who are interested in high design productivity through behavioural synthesis, domain-specific compilation, and FPGA overlays. Introduces FPGA technology to software developers by giving an overview of FPGA programming models and design tools, as well as various application examples; Provides a holistic analysis of the topic and enables developers to tackle the architectural needs for Big Data processing with FPGAs; Explains the reasons for the energy efficiency and performance benefits of FPGA processing; Provides a user-oriented approach and a sense for where and how to apply FPGA technology.