Separately Analytic Functions


Download Separately Analytic Functions PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Separately Analytic Functions book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Separately Analytic Functions


Separately Analytic Functions

Author: Marek Jarnicki

language: en

Publisher: JP Medical Ltd

Release Date: 2011


DOWNLOAD





The story of separately holomorphic functions began about 100 years ago. During the second half of the 19th century, it became known that a separately continuous function is not necessarily continuous as a function of all variables. At the beginning of the 20th century, the study of separately holomorphic functions started due to the fundamental work of Osgood and Hartogs. This book provides the first self-contained and complete presentation of the study of separately holomorphic functions, from its beginnings to current research. Most of the results presented have never been published before in book form. The text is divided into two parts. The first part deals with separately holomorphic functions, ``without singularities''. The second part addresses the situation of existing singularities. A discussion of the classical results related to separately holomorphic functions leads to the most fundamental result, the classical cross theorem as well as various extensions and generalizations, to more complicated ``crosses''. Additionally, several applications for other classes of ``separately regular'' functions are given. A solid background in basic complex analysis is a prerequisite. To make the book self contained, all the results are collected in special introductory chapters and referred to at the beginning of each section. This book is addressed to students and researchers in several complex variables as well as mathematicians and theoretical physicists interested in this area of mathematics.

A Primer of Real Analytic Functions


A Primer of Real Analytic Functions

Author: KRANTZ

language: en

Publisher: Birkhäuser

Release Date: 2013-03-09


DOWNLOAD





The subject of real analytic functions is one of the oldest in mathe matical analysis. Today it is encountered early in ones mathematical training: the first taste usually comes in calculus. While most work ing mathematicians use real analytic functions from time to time in their work, the vast lore of real analytic functions remains obscure and buried in the literature. It is remarkable that the most accessible treatment of Puiseux's theorem is in Lefschetz's quite old Algebraic Geometry, that the clearest discussion of resolution of singularities for real analytic manifolds is in a book review by Michael Atiyah, that there is no comprehensive discussion in print of the embedding prob lem for real analytic manifolds. We have had occasion in our collaborative research to become ac quainted with both the history and the scope of the theory of real analytic functions. It seems both appropriate and timely for us to gather together this information in a single volume. The material presented here is of three kinds. The elementary topics, covered in Chapter 1, are presented in great detail. Even results like a real ana lytic inverse function theorem are difficult to find in the literature, and we take pains here to present such topics carefully. Topics of middling difficulty, such as separate real analyticity, Puiseux series, the FBI transform, and related ideas (Chapters 2-4), are covered thoroughly but rather more briskly.

Complex Analysis


Complex Analysis

Author: Klas Diederich

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-04-17


DOWNLOAD





This volume contains the Proceedings of the International Workshop "Complex Analysis", which was held from February 12-16, 1990, in Wuppertal (Germany) in honour of H. Grauert, one of the most creative mathematicians in Complex Analysis of this century. In complete accordance with the width of the work of Grauert the book contains research notes and longer articles of many important mathematicians from all areas of Complex Analysis (Altogether there a re 49 articles in the volume). Some of the main subjects are: Cau chy-Riemann Equations with estimates, q-convexity, CR structures, deformation theory, envelopes of holomorphy, function algebras, complex group actions, Hodge theory, instantons, Kähler geometry, Lefschetz theorems, holomorphic mappings, Nevanlinna theory, com plex singularities, twistor theory, uniformization.