Sentential Logic Vs Predicate Logic

Download Sentential Logic Vs Predicate Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Sentential Logic Vs Predicate Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Propositional and Predicate Calculus: A Model of Argument

Author: Derek Goldrei
language: en
Publisher: Springer Science & Business Media
Release Date: 2005-09-08
Designed specifically for guided independent study. Features a wealth of worked examples and exercises, many with full teaching solutions, that encourage active participation in the development of the material. It focuses on core material and provides a solid foundation for further study.
Mathematics in Computing

This illuminating textbook provides a concise review of the core concepts in mathematics essential to computer scientists. Emphasis is placed on the practical computing applications enabled by seemingly abstract mathematical ideas, presented within their historical context. The text spans a broad selection of key topics, ranging from the use of finite field theory to correct code and the role of number theory in cryptography, to the value of graph theory when modelling networks and the importance of formal methods for safety critical systems. This fully updated new edition has been expanded with a more comprehensive treatment of algorithms, logic, automata theory, model checking, software reliability and dependability, algebra, sequences and series, and mathematical induction. Topics and features: includes numerous pedagogical features, such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; describes the historical contributions of such prominent figures as Leibniz, Babbage, Boole, and von Neumann; introduces the fundamental mathematical concepts of sets, relations and functions, along with the basics of number theory, algebra, algorithms, and matrices; explores arithmetic and geometric sequences and series, mathematical induction and recursion, graph theory, computability and decidability, and automata theory; reviews the core issues of coding theory, language theory, software engineering, and software reliability, as well as formal methods and model checking; covers key topics on logic, from ancient Greek contributions to modern applications in AI, and discusses the nature of mathematical proof and theorem proving; presents a short introduction to probability and statistics, complex numbers and quaternions, and calculus. This engaging and easy-to-understand book will appeal to students of computer science wishing for an overview of the mathematics used in computing, and to mathematicians curious about how their subject is applied in the field of computer science. The book will also capture the interest of the motivated general reader.
Language in Action

Language in Action demonstrates the viability of mathematical research into the foundations of categorial grammar, a topic at the border between logic and linguistics. Since its initial publication it has become the classic work in the foundations of categorial grammar. A new introduction to this paperback edition updates the open research problems and records relevant results through pointers to the literature. Van Benthem presents the categorial processing of syntax and semantics as a central component in a more general dynamic logic of information flow, in tune with computational developments in artificial intelligence and cognitive science. Using the paradigm of categorial grammar, he describes the substructural logics driving the dynamics of natural language syntax and semantics. This is a general type-theoretic approach that lends itself easily to proof-theoretic and semantic studies in tandem with standard logic. The emphasis is on a broad landscape of substructural categorial logics and their proof-theoretical and semantic peculiarities. This provides a systematic theory for natural language understanding, admitting of significant mathematical results. Moreover, the theory makes possible dynamic interpretations that view natural languages as programming formalisms for various cognitive activities.