Semiconductor Photonics Of Nanomaterials And Quantum Structures

Download Semiconductor Photonics Of Nanomaterials And Quantum Structures PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semiconductor Photonics Of Nanomaterials And Quantum Structures book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Semiconductor Photonics of Nanomaterials and Quantum Structures

This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light-matter interactions, and quantum technologies. .
Semiconductor Photonics of Nanomaterials and Quantum Structures

This book introduces the wider field of functional nanomaterials sciences, with a strong emphasis on semiconductor photonics. Whether you are studying photonic quantum devices or just interested in semiconductor nanomaterials and their benefits for optoelectronic applications, this book offers you a pedagogical overview of the relevant subjects along with topical reviews. The book discusses different yet complementary studies in the context of ongoing international research efforts, delivering examples from both fundamental and applied research to a broad readership. In addition, a hand-full of useful optical techniques for the characterization of semiconductor quantum structures and materials are addressed. Moreover, nanostructuring methods for the production of low-dimensional systems, which exhibit advantageous properties predominantly due to quantum effects, are summarized. Science and engineering professionals in the interdisciplinary domains of nanotechnology, photonics, materials sciences, and quantum physics can familiarize themselves with selected highlights with eyes towards photonic applications in the fields of two-dimensional materials research, light–matter interactions, and quantum technologies.
Photonics of Quantum-dot Nanomaterials and Devices

1. Introduction to photonic quantum dot nanomaterials and devices. 1.1. Physical properties of quantum dots. 1.2. Active semiconductor gain media. 1.3. Quantum dot lasers. 1.4. Laser cavities -- 2. Theory of quantum dot light-matter dynamics. 2.1. Rate equations. 2.2. Maxwell-Bloch equations. 2.3. Quantum luminescence equations. 2.4. Quantum theoretical description -- 3. Light meets matter I: microscopic carrier effect. 3.1. Dynamics in the active charge carrier plasma. 3.2. Dynamic level hole burning. 3.3. Ultrashort nonlinear gain and index dynamics. 3.4. Conclusion -- 4. Light meets matter II: mesoscopic space-time dynamics. 4.1. Introduction: transverse and longitudinal mode dynamics. 4.2. Influence of the transverse degree of freedom and nano-structuring on nearfield dynamics and spectra. 4.3. Longitudinal modes. 4.4. Coupled space-time dynamics. 4.5. Conclusion -- 5. Performance and characterisation: properties on large time and length scales. 5.1. Introduction. 5.2. Spatial and spectral beam quality. 5.3. Dynamic amplitude phase coupling. 5.4. Conclusion -- 6. Nonlinear pulse propagation in semiconductor quantum dot lasers. 6.1. Dynamic shaping of short optical pulses. 6.2. Nonlinear femtosecond dynamics. 6.3. Conclusion -- 7. High-speed dynamics. 7.1. Mode-locking in multi-section quantum dot lasers. 7.2. Dependence of pulse duration on injection current, bias voltage and device geometry. 7.3. Radio frequency spectra of the emitted light. 7.4. Short-pulse optimisation. 7.5. Conclusion -- 8. Quantum dot random lasers. 8.1. Spatially inhomogeneous semiconductor quantum dot ensembles. 8.2. Coherence properties. 8.3. Random lasing in semiconductor quantum dot ensembles. 8.4. Conclusion -- 9. Coherence properties of quantum dot micro-cavity lasers. 9.1. Introduction. 9.2. Radial signal propagation and coherence trapping. 9.3. Influence of disorder. 9.4. Conclusions