Semantics Of Type Theory

Download Semantics Of Type Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semantics Of Type Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Semantics of Type Theory

Author: T. Streicher
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Typing plays an important role in software development. Types can be consid ered as weak specifications of programs and checking that a program is of a certain type provides a verification that a program satisfies such a weak speci fication. By translating a problem specification into a proposition in constructive logic, one can go one step further: the effectiveness and unifonnity of a con structive proof allows us to extract a program from a proof of this proposition. Thus by the "proposition-as-types" paradigm one obtains types whose elements are considered as proofs. Each of these proofs contains a program correct w.r.t. the given problem specification. This opens the way for a coherent approach to the derivation of provably correct programs. These features have led to a "typeful" programming style where the classi cal typing concepts such as records or (static) arrays are enhanced by polymor phic and dependent types in such a way that the types themselves get a complex mathematical structure. Systems such as Coquand and Huet's Calculus of Con structions are calculi for computing within extended type systems and provide a basis for a deduction oriented mathematical foundation of programming. On the other hand, the computational power and the expressive (impred icativity !) of these systems makes it difficult to define appropriate semantics.
Categories for Types

This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.
Formal Semantics in Modern Type Theories

Author: Stergios Chatzikyriakidis
language: en
Publisher: John Wiley & Sons
Release Date: 2021-02-17
This book studies formal semantics in modern type theories (MTTsemantics). Compared with simple type theory, MTTs have much richer type structures and provide powerful means for adequate semantic constructions. This offers a serious alternative to the traditional settheoretical foundation for linguistic semantics and opens up a new avenue for developing formal semantics that is both model-theoretic and proof-theoretic, which was not available before the development of MTTsemantics. This book provides a reader-friendly and precise description of MTTs and offers a comprehensive introduction to MTT-semantics. It develops several case studies, such as adjectival modification and copredication, to exemplify the attractiveness of using MTTs for the study of linguistic meaning. It also examines existing proof assistant technology based on MTT-semantics for the verification of semantic constructions and reasoning in natural language. Several advanced topics are also briefly studied, including dependent event types, an application of dependent typing to event semantics.