Semantic Role Labeling Using Lexicalized Tree Adjoining Grammars


Download Semantic Role Labeling Using Lexicalized Tree Adjoining Grammars PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semantic Role Labeling Using Lexicalized Tree Adjoining Grammars book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Semantic Role Labeling Using Lexicalized Tree Adjoining Grammars


Semantic Role Labeling Using Lexicalized Tree Adjoining Grammars

Author: Yudong Liu

language: en

Publisher:

Release Date: 2009


DOWNLOAD





The predicate-argument structure (PAS) of a natural language sentence is a useful representation that can be used for a deeper analysis of the underlying meaning of the sentence or directly used in various natural language processing (NLP) applications. The task of semantic role labeling (SRL) is to identify the predicate-argument structures and label the relations between the predicate and each of its arguments. Researchers have been studying SRL as a machine learning problem in the past six years, after large-scale semantically annotated corpora such as FrameNet and PropBank were released to the research community. Lexicalized Tree Adjoining Grammars (LTAGs), a tree rewriting formalism, are often a convenient representation for capturing locality of predicate-argument relations. Our work in this thesis is focused on the development and learning of the state of the art discriminative SRL systems with LTAGs. Our contributions to this field include: We apply to the SRL task a variant of the LTAG formalism called LTAG-spinal and the associated LTAG-spinal Treebank (the formalism and the Treebank were created by Libin Shen). Predicate-argument relations that are either implicit or absent from the original Penn Treebank are made explicit and accessible in the LTAG-spinal Treebank, which we show to be a useful resource for SRL. We propose the use of the LTAGs as an important additional source of features for the SRL task. Our experiments show that, compared with the best-known set of features that are used in state of the art SRL systems, LTAG-based features can improve SRL performance significantly. We treat multiple LTAG derivation trees as latent features for SRL and introduce a novel learning framework -- Latent Support Vector Machines (LSVMs) to the SRL task using these latent features. This method significantly outperforms state of the art SRL systems. In addition, we adapt an SRL framework to a real-world ternary relation extraction task in the biomedical domain. Our experiments show that the use of SRL related features significantly improves performance over the system using only shallow word-based features.

Semantic Role Labeling


Semantic Role Labeling

Author: Martha Palmer

language: en

Publisher: Springer Nature

Release Date: 2022-05-31


DOWNLOAD





This book is aimed at providing an overview of several aspects of semantic role labeling. Chapter 1 begins with linguistic background on the definition of semantic roles and the controversies surrounding them. Chapter 2 describes how the theories have led to structured lexicons such as FrameNet, VerbNet and the PropBank Frame Files that in turn provide the basis for large scale semantic annotation of corpora. This data has facilitated the development of automatic semantic role labeling systems based on supervised machine learning techniques. Chapter 3 presents the general principles of applying both supervised and unsupervised machine learning to this task, with a description of the standard stages and feature choices, as well as giving details of several specific systems. Recent advances include the use of joint inference to take advantage of context sensitivities, and attempts to improve performance by closer integration of the syntactic parsing task with semantic role labeling. Chapter 3 also discusses the impact the granularity of the semantic roles has on system performance. Having outlined the basic approach with respect to English, Chapter 4 goes on to discuss applying the same techniques to other languages, using Chinese as the primary example. Although substantial training data is available for Chinese, this is not the case for many other languages, and techniques for projecting English role labels onto parallel corpora are also presented. Table of Contents: Preface / Semantic Roles / Available Lexical Resources / Machine Learning for Semantic Role Labeling / A Cross-Lingual Perspective / Summary

Discourse Function & Syntactic Form in Natural Language Generation


Discourse Function & Syntactic Form in Natural Language Generation

Author: Cassandre Creswell

language: en

Publisher: Routledge

Release Date: 2004-12-24


DOWNLOAD





Interest in statistical natural language generation is rapidly increasing. This work sheds important light from theoretical linguistics on the type of information crucial to statistical NLG algorithms.