Semantic Network Analysis

Download Semantic Network Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semantic Network Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Semantic Network Analysis in Social Sciences

Semantic Network Analysis in Social Sciences introduces the fundamentals of semantic network analysis and its applications in the social sciences. Readers learn how to easily transform any given text into a visual network of words co-occurring together, a process that allows mapping the main themes appearing in the text and revealing its main narratives and biases. Semantic network analysis is particularly useful today with the increasing volumes of text-based information available. It is one of the developing, cutting-edge methods to organize, identify patterns and structures, and understand the meanings of our information society. The first chapters in this book offer step-by-step guidelines for conducting semantic network analysis, including choosing and preparing the text, selecting desired words, constructing the networks, and interpreting their meanings. Free software tools and code are also presented. The rest of the book displays state-of-the-art studies from around the world that apply this method to explore news, political speeches, social media content, and even to organize interview transcripts and literature reviews. Aimed at scholars with no previous knowledge in the field, this book can be used as a main or a supplementary textbook for general courses on research methods or network analysis courses, as well as a starting point to conduct your own content analysis of large texts.
Semantic Network Analysis

This books describes a number of techniques that have been developed to facilitate Semantic Network Analysis. It describes techniques to automatically extract networks using co-occurrence, grammatical analysis, and sentiment analysis using machine learning. Additionally, it describes techniques to represent the extracted semantic networks and background knowledge about the actors and issues in the network, using Semantic Web techniques to deal with multiple issue categorisations and political roles and functions that shift over time. It shows how this combined network of message content and background knowledge can be queried and visualized to make it easy to answer a variety of research questions. Finally, this book describes the AmCAT infrastructure and iNet coding program for that have been developed to facilitate managing large automatic and manual content analysis projects.
Semantic Network Analysis in Social Sciences

Semantic Network Analysis in Social Sciences introduces the fundamentals of semantic network analysis and its applications in the social sciences. Readers learn how to easily transform any given text into a visual network of words co-occurring together, a process that allows mapping the main themes appearing in the text and revealing its main narratives and biases. Semantic network analysis is particularly useful today with the increasing volumes of text-based information available. It is one of the developing, cutting-edge methods to organize, identify patterns and structures, and understand the meanings of our information society. The first chapters in this book offer step-by-step guidelines for conducting semantic network analysis, including choosing and preparing the text, selecting desired words, constructing the networks, and interpreting their meanings. Free software tools and code are also presented. The rest of the book displays state-of-the-art studies from around the world that apply this method to explore news, political speeches, social media content, and even to organize interview transcripts and literature reviews. Aimed at scholars with no previous knowledge in the field, this book can be used as a main or a supplementary textbook for general courses on research methods or network analysis courses, as well as a starting point to conduct your own content analysis of large texts.