Semantic Knowledge Representation And Analysis


Download Semantic Knowledge Representation And Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Semantic Knowledge Representation And Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Knowledge Representation and the Semantics of Natural Language


Knowledge Representation and the Semantics of Natural Language

Author: Hermann Helbig

language: en

Publisher: Springer Science & Business Media

Release Date: 2005-12-19


DOWNLOAD





Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the pres- vation of cultural achievements and their transmission from one generation to the other. During the last few decades, the ?ood of digitalized information has been growing tremendously. This tendency will continue with the globali- tion of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical und- standing and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this c- text, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the g- eration of natural language expressions from formal representations. This book presents a method for the semantic representation of natural l- guage expressions (texts, sentences, phrases, etc. ) which can be used as a u- versal knowledge representation paradigm in the human sciences, like lingu- tics, cognitive psychology, or philosophy of language, as well as in com- tational linguistics and in arti?cial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.

Prediction and Analysis for Knowledge Representation and Machine Learning


Prediction and Analysis for Knowledge Representation and Machine Learning

Author: Avadhesh Kumar

language: en

Publisher: CRC Press

Release Date: 2022-01-31


DOWNLOAD





A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which include both basic and advanced concepts.

Semantic Knowledge Representation and Analysis


Semantic Knowledge Representation and Analysis

Author: Dina D. Kachintseva

language: en

Publisher:

Release Date: 2011


DOWNLOAD





Natural language is the means through which humans convey meaning to each other - each word or phrase is a label, or name, for an internal representation of a concept. This internal representation is built up from repeated exposure to particular examples, or instances, of a concept. The way in which we learn that a particular entity in our environment is a "bird" comes from seeing countless examples of different kinds of birds. and combining these experiences to form a menial representation of the concept. Consequently, each individual's understanding of a concept is slightly different, depending on their experiences. A person living in a place where the predominant types of birds are ostriches and emus will have a different representation birds than a person who predominantly sees penguins, even if the two people speak the same language. This thesis presents a semantic knowledge representation that incorporates this fuzziness and context-dependence of concepts. In particular, this thesis provides several algorithms for learning the meaning behind text by using a dataset of experiences to build up an internal representation of the underlying concepts. Furthermore, several methods are proposed for learning new concepts by discovering patterns in the dataset and using them to compile representations for unnamed ideas. Essentially, these methods learn new concepts without knowing the particular label - or word - used to refer to them. Words are not the only way in which experiences can be described - numbers can often communicate a situation more precisely than words. In fact, many qualitative concepts can be characterized using a set of numeric values. For instance, the qualitative concepts of "young" or "strong" can be characterized using a range of ages or strengths that are equally context-specific and fuzzy. A young adult corresponds to a different range of ages from a young child or a young puppy. By examining the sorts of numeric values that are associated with a particular word in a given context, a person can build up an understanding of the concept. This thesis presents algorithms that use a combination of qualitative and numeric data to learn the meanings of concepts. Ultimately, this thesis demonstrates that this combination of qualitative and quantitative data enables more accurate and precise learning of concepts.