Self Organized Criticality Models Of Neural Development

Download Self Organized Criticality Models Of Neural Development PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Self Organized Criticality Models Of Neural Development book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Self-Organized Criticality, Three Decades Later

Author: Subhrangshu Sekhar Manna
language: en
Publisher: Frontiers Media SA
Release Date: 2022-01-28
Paradigms Of Complexity: Fractals And Structures In The Sciences

Every reader will find something of interest in this book — from superdiffusion of the ocean surface to fetal heartbeats, from solar wind to the wearing-out of tools, from radioactive contamination to texture analysis, from image rendering to neural developments. The all-pervading link connecting these disparate disciplines is the realization that a linear approach to the majority of natural processes is at best only an approximation that can frequently be downright misleading. Consequently, the rise of what is broadly called the theory of complexity has gained tremendous momentum in the last decade or two. This modern approach aims at, and frequently succeeds in, correctly explaining many natural processes.The papers in this volume are based on presentations of the sixth international conference exploring the above-mentioned issues. These conferences are now regular and well established among the nonlinear series of conferences. This conference series is organized in different geographical regions, to encourage international collaboration. Among the distinguishing features of the series is its multidisciplinary nature, which has been growing steadily.
Criticality as a signature of healthy neural systems: multi-scale experimental and computational studies

Author: Paolo Massobrio
language: en
Publisher: Frontiers Media SA
Release Date: 2015-05-08
Since 2003, when spontaneous activity in cortical slices was first found to follow scale-free statistical distributions in size and duration, increasing experimental evidences and theoretical models have been reported in the literature supporting the emergence of evidence of scale invariance in the cortex. Although strongly debated, such results refer to many different in vitro and in vivo preparations (awake monkeys, anesthetized rats and cats, in vitro slices and dissociated cultures), suggesting that power law distributions and scale free correlations are a very general and robust feature of cortical activity that has been conserved across species as specific substrate for information storage, transmission and processing. Equally important is that the features reminiscent of scale invariance and criticality are observed at scale spanning from the level of interacting arrays of neurons all the way up to correlations across the entire brain. Thus, if we accept that the brain operates near a critical point, little is known about the causes and/or consequences of a loss of criticality and its relation with brain diseases (e.g. epilepsy). The study of how pathogenetical mechanisms are related to the critical/non-critical behavior of neuronal networks would likely provide new insights into the cellular and synaptic determinants of the emergence of critical-like dynamics and structures in neural systems. At the same time, the relation between the impaired behavior and the disruption of criticality would help clarify its role in normal brain function. The main objective of this Research Topic is to investigate the emergence/disruption of the emergent critical-like states in healthy/impaired neural systems.